

Figure 1. A theodolite (left) was used to define grids for high-resolution magnetic survey. James Kelly and Ron Wilson was setting up the theodolite. A portable cesium gradiometer G858 (right) was used to measure the total component of the geomagnetic field. Ron Wilson was performing the magnetic survey.


Figure 2. The half width of the total field component of magnetic anomaly ( T ) of the monopole with the vertical magnetization is $\pm 0.77 \mathrm{x} / \mathrm{z}$. It is $\pm 0.45 \mathrm{x} / \mathrm{z}$ for the vertical gradient (Tz). The horizontal resolution is theoretically increased with the vertical gradient data by $70 \%$ ( $0.77 / 0.45$ $=1.71$ )


Figure 3. Magnetic anomaly of Well KGS. (a) Total field component of magnetic anomaly of the top sensor (44 inches above the ground). (b) Total field component of magnetic anomaly of the bottom sensor (14 inches above the ground). (c) Total field component of magnetic anomaly " 2 inches above the ground." (d) Pseudo-vertical gradient (bottom - top). Improvement in the horizontal resolution is obvious when comparing magnetic field (a) with the pseudo-vertical gradient data (d). The downward continuation results (c) also possess higher horizontal resolution. Central profiles indicated by white lines are shown in (e).


Figure 3e. The central profiles of magnetic data shown in Figure 3a-3d. The narrower anomaly peaks are, the higher the horizontal resolution.


Figure 4. Magnetic signatures at known well sites. The pseudo-vertical gradient data at both sites (b) and (d) possess higher horizontal resolution than their total field component of magnetic anomalies (a) and (c).


Figure 5a. A site map showing the location of the high-resolution magnetic surveys conducted in the Big Chief Mobile Home Park in the City of Hutchinson in 2003.


Figure 5 b. The survey area with grid numbers.


Figure 6. Survey lines within a grid. Arrows indicate the walking direction.

Total Field Component of Magnetic Anomaly at Big Chief Mobile Home Park (Bottom Sensor)


Figure 7. The total field component of magnetic anomaly from the bottom sensor at the Big Chief Mobile Home Park, Hutchinson, Kansas.

Total Field Component of Magnetic Anomaly at Big Chief Mobile Home Park (Top Sensor)


Figure 8. The total field component of magnetic anomaly from the top sensor at the Big Chief Mobile Home Park, Hutchinson, Kansas.

Pseudo-vertical Gradient of Magnetic Anomaly at Big Chief Mobile Home Park (Bottom Sensor - Top Sensor)


Figure 9. Pseudo-vertical gradient data at the Big Chief Mobile Home Park, Hutchinson, Kansas.


Figure 10. A residual magnetic map at the Big Chief Mobile Home Park, Hutchinson, Kansas.



Figure 11. Sheds made of seven different materials in the Big Chief Mobile Home Park, Hutchinson, Kansas. a. Type-I metal sheets. b. Type-II metal sheets. c. Type-III metal sheets. d. Concrete. e. Bricks. f. Wood. g. A shed with metal door and metal beams. Ron Wilson and Jianghai Xia were acting as a scale in the photos.


Figure 12. A 5 " water well $(129,796)$ at a depth of 2 ft (top, left). A 1.5 " gas pipe $(117,755)$ at 3 ft depth (bottom, left). The total field component of the magnetic anomaly and gradient data of Grid 12 (right).


Figure 13. A 1 " rebar $(219,687)$ at a depth of $3 \mathrm{ft}(\mathrm{left})$. The total field component of the magnetic anomaly and gradient data of Grid 47 (right).


Figure 14. A pile of well cases $(448,908)$ in Grid 45 and $(454,871)$ in Grid 46 (bottom) produced anomalies with amplitude of over 18,000 nT (top). The anomalies were disappeared after the pile of well cases was removed.


Figure 15a. Two tie-downs for a trailer at $(201,631)$ and $(210,631)$ in Grid 47 produced anomalies with amplitude of around $3,000 \mathrm{nT}$ with the half-width of 2 ft or less (right). Similar anomalies can also be seen at $(176,646)$ and $(186,639)$, and $(240,612)$, etc.


Figure 15 b. Two tie-downs for a trailer at $(210,590)$ and $(190,598)$ in Grid 48 produced anomalies with amplitude of around $4,000 \mathrm{nT}$ with the half-width of 3 ft or less (right). Similar anomalies can also be seen at $(176,522)$, etc.


Figure 16. Two power outlets at $(200,1034)$ in Grid 17 and $(494,1088)$ in Grid 44 produced anomalies with amplitude of around $3,000 \mathrm{nT}$ and $8,000 \mathrm{nT}$, respectively. Their half-widths were 3 ft or less.


Figure 17. Two light poles at $(206,1179)$ in Grid 32 and $(436,850)$ in Grid 46 produced anomalies with amplitude of over $11,000 \mathrm{nT}$. Their half-width were over 3 ft . The magnetic reading was back to normal $(53,500 \mathrm{nT})$ after the light pole 37 (BC46-2) was removed.


Figure 18. A $6 "$ horizontal corrugated drainage pipe $(236,748)$ in Grid 24 at a depth of 1 ft . The total field component of the magnetic anomaly and gradient data. The anomaly was on the one side of a street. The almost same anomaly (BC24-1) at the other side of the street $(203,752)$ and was interpreted as the other end of the drainage pipe. The other anomaly due to the end of horizontal pipe was located at $(240,612)$ in Grid 47.


Figure 19. A telephone box produced a magnetic anomaly with amplitude of $12,000 \mathrm{nT}$ and gradient of $300 \mathrm{nT} / \mathrm{in}$ at $(469,1240)$ in Grid 42 . An anomaly at $(63,1451)$ in Grid 63 was interpreted to be due to a sewer line. The other anomaly at $(20,1452)$ in Grid 63 was also interpreted to be due to the same sewer line.

Table 1. Readings at the center of sheds (inside).

| Type-I metal sheets |  |  |  |
| :---: | :---: | :---: | :---: |
| Name of shed | Relationship | Reading (nT) | Notes |
| BC13-1 | $\mathrm{x} 1>\mathrm{x} 2$ | 37,000 | in Grid 13, made of type-I metal sheets |
| BC13-2 |  | 44,000 | xi, yi are the coordinates of shed i in the grid |
| BC15-1 | $\mathrm{y} 1<\mathrm{y} 2$ | 40,000 | If not metioned, sheds were made of type-I metal |
| BC15-2 | $\mathrm{x} 3>\mathrm{x} 2$ or x 1 | 39,000 | sheets. See photo 1999, 2015 |
| BC15-3 |  | 42,000 |  |
| BC16-1 |  | 40,000 |  |
| BC17-1 | y1 < y2 | 40,000 |  |
| BC17-2 |  | 39,000 |  |
| BC18-1 |  | 43,000 |  |
| BC19-1 | y1 < y2 | 39,000 |  |
| BC19-2 |  | 38,000 | After shed removed, reading was 53,000 |
| BC20-1 |  | 36,000 | A dryer inside |
| BC21-1 | $\mathrm{x} 1>\mathrm{x} 2$ | 38,000 |  |
| BC21-2 |  | 40,000 |  |
| BC22-1 |  | 35,000 |  |
| BC23-1 | y1 < y2 | 42,000 | After shed removed, reading was 52,500 |
| BC23-2 |  | 39,000 |  |
| BC24-1 |  | 41,000 |  |
| BC26-1 | $\mathrm{x} 1<\mathrm{x} 2$ | 37,000 |  |
| BC26-2 |  | 41,000 |  |
| BC26-3 | y3 > y2 or y1 | 37,000 |  |
| BC27-1 | $\mathrm{x} 1<\mathrm{x} 2$ | 35,000 |  |
| BC27-2 |  | 38,000 |  |
| BC28-1 | y1 < y2 | 37,000 | Another shed in Grid 28 BC28-2 |
| BC29-1 |  | 36,000 |  |
| BC30-1 | $\mathrm{y} 1>\mathrm{y} 2$ | 39,000 |  |
| BC30-2 |  | 38,000 |  |
| BC31-1 | $\mathrm{y} 1>\mathrm{y} 2$ | 39,000 |  |
| BC31-2 |  | 38,000 |  |
| BC33-1 |  | 38,000 |  |
| BC34-1 |  | 41,000 |  |
| BC35-2 |  | 33,000 | Other two sheds in Grid 35 BC35-1, BC35-3 |
| BC37-1 |  | 37,000 |  |
| BC39-1 |  | 35,000 |  |
| BC43-1 |  | 40,000 |  |
| BC44-1 | $\mathrm{y} 1>\mathrm{y} 2$ | 41,000 |  |
| BC44-2 |  | 39,000 |  |
| BC59-1 |  | 38,000 | Type-I metal sheets. photo 1999, 2015 |

Table 1. (continue)

Table 2. Anomaly List.

| Grid \# | Anomaly \# | $X$ | Y | Amplitude (nT) | Half-width (ft) | Gradent (nT/in) | Source | Photo \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A. Vertical pipes/rebar |  |  |  |  |  |  |  |  |
| 1 | 1 | 57 | 26 | 62,740 | 3 |  | a 1.5" gas pipe (vertical) | 2046 |
| 1 | 2 | 81 | 7 | 57,050 | 2 |  | a 1.25" pipe (vertical) | 2047 |
| 12 | 1 | 129 | 796 | 57,360 | 3 | 120 | a 5 " water well, $2^{\prime}$ deep | 2079-2080 |
| 12 | 2 | 117 | 755 | 57,330 | 2 | 150 | a 1.5" gas pipe (vertical), 3" deep | 2077-2078 |
| 32 | 2 | 293 | 1114 | 58,160 | 2 |  | a 1" gas pipe (vertical) | 2055 |
| 47 | 1 | 219 | 687 | 58,290 | 2 |  | a rebar, $3^{\prime \prime}$ deep (vertical) | 2082-2083 |
| 66 | 2 | 478 | 744 | 60,960 | 2 |  | a 1" gas pipe (vertical) | 2042 |
| 66 | 4 | 487 | 801 | 57,290 | 1.5 |  | a 1" elec. pipe (vertical) | 2044-2045 |
|  |  |  |  |  |  |  |  |  |
| B. Well cases |  |  |  |  |  |  |  |  |
| 45 | 1 | 448 | 908 | 71,480 | 7 |  | well cases, removed reading back to 52,000 | 2025-2026 |
| 46 | 1 | 454 | 871 | 73,850 | 5 |  | well cases, removed reading back to 52,000 | 2025-2026 |
|  |  |  |  |  |  |  |  |  |
| C. Trailer ties |  |  |  |  |  |  |  |  |
| 44 | 2 | 445 | 1073 | 58,200 | 1.5 | 180 | a tie-down for a trailer | 2061 |
| 47 | 3 | 201 | 631 | 56,230 | 2 | 130 | a tie-down for a trailer | 2066 |
| 47 | 4 | 210 | 631 | 57,840 | 2 | 130 | a tie-down for a trailer | 2067 |
| 48 | 2 | 210 | 590 | 58,230 | 2 | 190 | a trailer tie | 2070 |
| 48 | 3 | 190 | 598 | 58,070 | 3 |  | a trailer tie | 2071 |
|  |  |  |  |  |  |  |  |  |
| D. Power outlets |  |  |  |  |  |  |  |  |
| 17 | 2 | 200 | 1034 | 57,050 | 2 | 180 | an electric outlet | 2049 |
| 44 | 1 | 494 | 1088 | 61,000 | 3 | 170 | an electric outlet | 2060 |
| 46 | 3 | 490 | 882 | 59,700 | 2 | 90 | an electric outlet | 2064 |
| 47 | 2 | 174 | 645 | 57,450 | 2 | 280 | an electric panel | 2065 |
| 55 | 1 | 482 | 206 | 58,690 | 3 | 150 | an electric panel | 2075 |
| 61 | 1 | 487 | 492 | 61,240 | 2.5 | 280 | a power outlet | 2073 |
| 61 | 2 | 488 | 452 | 60,670 | 2.5 | 180 | an electric outlet | 2072 |
| 66 | 3 | 487 | 758 | 60,470 | 2 |  | an electric outlet | 2043 |

Table 2. (continue)

| E. Light poles |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 1 | 200 | 988 | 63,297 | 5.5 | 140 | a light pole | 2052 |
| 28 | 2 | 200 | 940 | 64,870 | 4.5 | 210 | a light pole | 2051 |
| 32 | 1 | 206 | 1179 | 66,230 | 3.5 | 220 | a light pole | 2054 |
| 34 | 1 | 203 | 1276 | 64,920 | 3.5 | 100 | a light pole | 2056 |
| 41 | 1 | 445 | 1346 | 64,780 | 3 | 120 | a light pole | 2058 |
| 46 | 2 | 436 | 850 | 64,880 | 4 | 130 | a light pole, reading 53,500 after the pole removed | 2063, 2084-2085 |
| 66 | 1 | 433 | 770 | 64,160 | 3 | 110 | a light pole | 2041 |
|  |  |  |  |  |  |  |  |  |
| F. Horizontal pipes |  |  |  |  |  |  |  |  |
| 24 | 1 | 204 | 754 | 58,120 | 2 | 150 | the other end of 6" corrugated drainage pipe (no digging) |  |
| 24 | 2 | 236 | 748 | 59,860 | 2 | 210 | a horizontal 6" corrugated drainage pipe, 1 ft deep | 2081 |
| 47 | 5 | 240 | 612 | 59,160 | 2 | 230 | a 1" (an end of horizontal) pipe | 2068 |
|  |  |  |  |  |  |  |  |  |
| G. Other sources |  |  |  |  |  |  |  |  |
| 13 | 1 | 115 | 839 | 58,480 | 1.5 | 170 | a 2' sawer cover | 2048 |
| 17 | 1 | 145 | 1061 | 59,750 | 2 | 210 | 2 T-shape posts (steel), 3' apart | 2050 |
| 29 | 1 | 315 | 908 | 59,630 | 3 | 130 | a small shed (corrugated metal sheet) | 2053 |
| 36 | 1 | 272 | 1364 | 64,960 | 5.5 | 300 | a pile of junk metal sheets | 2057 |
| 42 | 1 | 469 | 1240 | 65,730 | 3 | 250 | a telephone box | 2059 |
| 44 | 3 | 460 | 1077 | 62,480 | 2 | 380 | a corner of a shed | 2062 |
| 48 | 1 | 192 | 588 | 58,350 | 2 | 180 | steel cables | 2069 |
| 55 | 2 | 460 | 200 | 58,860 | 2 | 200 | a water meter | 2074 |
| 57 | 1 | 63 | 1451 | 59,510 | 2.5 | 140 | a sewer line (Green flags) | 2076 |

