As a result of discussions with legislators and agency heads, this mandate has been formulated in terms of evaluating the means by which projected public water supply demands for additional water by the year 2020 might be met. As this activity has not previously been undertaken, methods have had to be developed. Since the topic is a complex one and the time and resources available do not permit a detailed, across-the-board analysis of all public water suppliers (close to 1,000 in the state), the strategy adopted has been one of 'triage' -- a term originally used to describe prioritization of care for casualties in warfare or disaster situations, but more generally applied to dealing with a wide range of problems with limited resources (see appendix for further discussion of this approach).
Because of the emphasis on competition, the project has focused on identifying the locations most likely to experience difficulty in meeting future demands as a result of mismatch between demand and available resources. KWO public water supply demand projections were used as the basis for the assessment. The initial assessment is designed in three hierarchical stages:
1. Rank the absolute amounts and relative rates of demand change in various geographic areas, and select criteria by which to make a first identification of potential problem areas.Once complete, this initial assessment will have identified the areas most likely to experience difficulty in obtaining adequate water in the future, and will also provide an inventory of the candidate sources -- and the competitors for their use -- in the same area. At this point, a more detailed analysis can be undertaken to address possible resolution of the anticipated problems.2. Review the classifications and refine with additional criteria as appropriate -- water quality is an example of a consideration in obtaining an adequate usable supply of water in some areas.
3. Assess the water potentially available in the identified areas from:
a. Lakes, impoundments, and reservoirs (KWO)b. Streamflow and alluvial aquifers (KGS, KWO)
c. Groundwater (KGS).
Analysis at a scale above that of the individual supply district has a number of advantages and justifications:
Preliminary criteria were developed to conduct the triage. Three primary factors and a secondary factor were considered. First, projected shortfalls in supply (present supply minus projected demand) were analyzed, and ranked by year. Because of the time required for both legal and engineering solutions to problems to be implemented, near-term problems have a high level of urgency. Second, it was judged that there was some absolute level of increase that was sufficiently small to be unlikely to result in serious problems unless the supply were already extremely marginal. An initial threshold was established and the amount of demand shortfall was classified above in steps above this level. The values selected can be easily changed if review suggests better values. The third factor considered was the percentage change. It is common experience that relatively straightforward conservation measures can result in savings of 10% or more unless the community in question has already been under heavy restrictions, and a 20 year time frame is ample to allow for the institution of education, regulation, and pricing programs to increase use efficiency. Increases of less than 10%, regardless of absolute size, were not considered likely to be highly problematic. Increases of 10-25% and >25% were ranked as increasingly serious.
The secondary factor considered is actually more appropriate to the supply issues discussed elsewhere in this report, but was included here to highlight a separate class of problems. This assessment implicitly assumes that present supply is adequate and stable. This is not always the case; in particular, substantial areas of the High Plains aquifer have projected depletion times of less than 50 years, and the public supplies relying on those resources have few alternatives to turn to. The problem is even more serious for communities with growing demands in those areas where the aquifer is administratively closed to further appropriations. Southwest Kansas was used as a case study of these problems, and also serves to illustrate the display issues involved in comparing districts, groups, and counties of disparate size and demand density (see below).
Figure 1: Percent Increase in Demand, 2000 - 2020 | ||
---|---|---|
20 year growth (all documented suppliers) | Risk Factors: Rate of Demand Growth | |
---|---|---|
< 0 % |
2. Supply reliability may be lower at higher delivery rates or volumes 3. Regional clusters of growth set the stage for competition when some districts exceed their supply |
|
0 - 10 % | ||
10 - 25 % | ||
> 25 % |
Figure 2: Projected Time of Supply Shortfall | ||
---|---|---|
shortfall year | Risk Factors: Time of shortfall | |
---|---|---|
> 2040 | Rapid onset of problems:
1. Limits options for response 2. Promotes high-cost, short-term, 'band-aid' solutions 3. Puts a premium on effective planning and preparation |
|
2021-2040 | ||
2011-2020 | ||
2000-2010 |
Figure 3: Projected Shortfall Volume, 2020 | ||
---|---|---|
shortfall volume, 2020 (kgal/year) | Risk Factors: Shortfall volume | |
---|---|---|
< 0 (0) | The following increase with
increasing volume of projected shortfall:
1. Resources at risk -- people, dollars. 2. Time required for correction 2. Cost of correction 3. Sensitivity to errors in estimates |
|
0 - 25,000 (3) | ||
25-50,000 (2) | ||
> 50,000 (1) |
Figure 4a: Composite Risk Score (shortfall groups) -- Time, Volume, Rate | ||
---|---|---|
score (sum of volume, percent and year) | Risk Factors: | |
---|---|---|
no shortfall through 2040 | Risks and costs of correction or mitigation are related to the magnitude of the problem, the time available to deal with it, and the rates of change and uncertainties involved. The simple sum of component scores is one example of a combined approach. | |
7-9 | ||
5-6 | ||
3-4 |
Figure 4b: Composite Risk Score (shortfall groups by county) -- Time, Volume, Rate | ||
---|---|---|
SW Kansas Municipalities -- a special case study in isolation and resource access. Color coding by year of shortfall.
Figure 5a: A Special Case -- SW Kansas Suppliers' Demand Projections | ||
---|---|---|
shortfall year | Special Risk Factors | |
---|---|---|
> 2040 | Identified districts:
1. Are mostly in areas closed to appropriation; 2. Are isolated; 3. Depend on a resource that is depleting; 4. In many cases, are on the margin of the aquifer; 5. Lack supply alternatives. |
|
2021-2040 | ||
2011-2020 | ||
2000-2010 |
Figure 5b: A Special Case -- SW Kansas Groundwater Supplies | ||
---|---|---|
Primary water right holders -- the Group supply does not reflect that of all its members.
Figure 6: Primary and Secondary Water Suppliers | ||
---|---|---|
Primary water right holders | Risk Factors: Secondary suppliers | |
---|---|---|
Possess some groundwater or surface water rights or long-term reservoir contracts | 1. Planning and development
is effectively under the control of the primary supplier(s).
2. Competition and shortfalls may develop within supply groups that have adequate total resources on paper. |
|
No rights or independent contracts; depend on purchase from primary suppliers | ||