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Abstract

This report concerns the development and use of various types of finite difference
numerical schemes for the simulation of basic cases of aquifer contamination. The contaminant
concentration is prescribed at the aquifer boundary or the penetrating contaminant flux is
prescribed at that boundary. The study addresses to a hierarchy of possible approximate
approaches that can be useful in some classes of contaminant hydrology problems. The aquifer
is represented by a simplified conceptual model allowing very basic simplifications and tests of
the numerical schemes. The numerical schemes developed in this study, can easily be modified

and extended to cases that are more complicated than those considered in the present study.



Notation
a

aL

A

BL

C

Co

Cr

C*

dm

dimensionless transverse dispersivity
dimensionless longitudinal dispersivity
coefficient defined in egs. (52) and (53)
boundary layer

normalized contaminant concentration
normalized concentration at the boundary of the domain
normalized concentration at the top of the BL
contaminant concentration [ML~3]
concentration of reference [ML=3]
classical BL

representation of §in figures

dispersion tensor [L2T-1]

longitudinal dispersion coefficient [L2T-1]
transverse dispersion coefficient [L2T—-1]
gravitational acceleration [LT-2]

dummy variable representing Ax or Ay
V-1

permeability [L2]

length scale [L]

power series

number of time step

power coefficient

number of iteration

pressure [ML-1T-2]

specific discharge of groundwater [LT-1]

mass flux of the contaminant penetrating into the aquifer [ML~2T-1]



qR relative penetrating mass flux

r number of the nodal point in the longitudinal direction
ROI region of interest

s number of the nodal point in the vertical direction
t dimensionless time

* time [T]

) time scale [T]

TSBL top specified BL

u unit step function

v interstitial flow velocity [LT-1]

x dimensionless longitudinal coordinate

Xmax length of the domain

xp starting point for the development of the ROI

x* longitudinal coordinate [L]

y dimensionless vertical coordinate

y* vertical coordinate [L]

g, a1, 0, as...  coefficients defined in eq. (28)

B dummy coefficient representing By or B,

Jiji coefficient of oscillations in the x direction

B2 coefficient of oscillations in the y direction

Y coefficient of growth with time

é thickness of the ROI

& value of y at which concentration is negligible
At time step

Ax longitudinal interval

Ay vertical interval

n dimensionless coordinate of the BL



g & ™ ™ ® o 3

valueof naty=4

dimensionless coordinate defined in eq. (22)
fluid viscosity

coefficient of amplification

fluid density [ML-3]

porosity

coefficient of over-relaxation



Introduction

This study addresses to the development of approximate methods for the simulation of
groundwater contamination. We refer to a very simplified conceptual model of an aquifer
subject to contamination as shown in fig. 1(a). The aquifer is unconfined, and saturated
thickness is great enough so that the Dupuit approximation can be useful. Flow direction and
streamlines are almost horizontal. The longitudinal x* axis represents the surface through which
contaminants are introduced into the aquifer. The y* axis is vertical in the downward direction.

Flow conditions and contaminant transport in the domain of fig. 1(a) are governed by the
following differential equations

c7=—§(Vp—p§) M

%.;.VVC*:V(DVC*) 2)

where, ¢ is the specific discharge; k is the permeability; u is the fluid viscosity; p is the pressure;
p is the fluid density; g is the gravitational acceleration; C* is the contaminant concentration; V
is the interstitial flow velocity; D is the dispersion tensor; and t* is the time.

The system of partial differential egs. (1) and (2) can be solved by various types of
numerical procedures. However, the Dupuit approximation is usually employed for the solution
of eq. (1). In the particular simplified domain shown in fig. 1(a), this approximation yields a
uniform horizontal flow velocity, provided that the permeability is uniform. Then eq. (2) is

represented as

oC* dC* d*C* 9*C*
8:*+V3x*=D‘ 3x*2+D’3y*2 3)

where x* and y* are the longitudinal and vertical coordinates, respectively; Dy and Dy are the
longitudinal and transverse dispersion coefficients, respectively.
As the domain is homogeneous and isotropic we may refer to the following

characteristics of the domain

L, t, =11V, C, @)



where [ is an adopted unit length along the surface y* = 0; g is the time corresponding to/; for
the velocity V; Cp is a concentration of reference. The value of Cp should somehow be
connected with prescribed boundary values or risk values of the contaminant concentration.
The characteristics of eq. (4) are used to nondimensionalize the variables of eq. (3) as
x=x*/ly;, y=y*/l; t=t*/1; C=C/C, (5)

Introducing these terms into eq. (3), we obtain
aC  dC d*C  d'C

-bT+-é;-=aL§i-+a-ay—2 6)
where, a7, and a are the dimensionless longitudinal and transverse dispersivities which are
defined as

a, =D, /(IOV); a=D, /(IOV) @)

The following sections of this report are devoted to the development of numerical
solutions to eq. (6) subject to appropriate initial and boundary conditions relevant to cases of
groundwater contamination in aquifers that can approximately be described by the conceptual
model of fig. 1(a).

If at the boundary y* = (0 the value of the contaminant concentration is prescribed, then it
seems reasonable to adopt

C, = C*(x*,0,1%) @®)
namely contaminant concentrations are normalized with regard to the concentration at the x*
axis. Under such conditions eq. (6) is subject to the following initial and boundary conditions

C=C(x,y,t) x,yt20

C(x,y,0)=0 except for C(x,0,0)=1.0

C(x,0,)=1
C(x,00,6)=0
%——)O at x— oo )



In figure 1(b) the dimensionless domain and quantities are shown for the prescribed
contaminant concentration at y = 0. Some of these quantities will be defined in following
sections of this report.

If at the boundary y = 0 is prescribed, the contaminant mass flux which penetrates into

groundwater, then

aC*
oD, Ewe

where, g, is the contaminant mass flux penetrating into the domain through the x* axis; and ¢ is

=—q, at y*=0 10)

the porosity of the porous medium.

By introducing the normalized quantities of egs. (5) and (7) into eq. (10) we obtain

aC
a§=-qk at y=0 11
where, gp is the normalized flux of the penetrating contaminant
q
= Am 12
qr 4C, (12)

where, ¢ is the specific discharge of the groundwater flow.
The following initial and boundary conditions are applicable when the contaminant mass
flux is prescribed at y =0
C=C(x,y,t) xyt20

C(x,y,0)=0

%=—%’3— at y=0

C(0,y,1)=0

C(x,00,8)=0

%f—-—)O at x —» oo (13)

In fig. 1(c) the dimensionless domain and quantities are shown for the prescribed

contaminant flux penetrating into groundwater at y = 0.



Direct Solution of the Contaminant Transport Equation

We consider some finite difference numerical schemes which can be applied to the
solution of eq. (6) subject to either the boundary conditions of eq. (9) or those of eq.(13). We
have chosen to apply finite difference schemes as with such schemes it is convenient to follow
the various difficulties involved in the numerical simulation and to consider the use of some
further approximation which are presented in following sections.

The numerical schemes developed for the solution of eq. (6) should be based on the
following basic considerations: convergence, stability and accuracy.

The boundary and initial conditions of egs. (9) and (13) indicate that when the numerical
simulation starts all terms of eq. (6) have vanishing values. As long as both terms of the right-
hand side of eq. (6) are very small, that equation is approximately a first order hyperbolic
equation in the x, y plane. If the second term of the left-hand side is small then eq. (6) is
approximately a parabolic equation in the x, ¢ and y, ¢ planes. If steady state conditions are
established in the domain, then the first term of eq. (6) vanishes. Under such conditions eq. (6) is
converted to an elliptic partial differential equation. However, if in steady state the first right-
hand side term of eq. (6) is much smaller than the last term of eq.(6) then this equation is
converted to a parabolic equation in the x, y plane.

In following paragraphs we consider the use of various types of numerical schemes. For
every adopted scheme criteria of stability and performance will be evaluated. As long as steady
state conditions are not established in the domain, we need a numerical scheme that takes into
account the possible nature of eq. (6) as a first order hyperbolic equation in the x, ¢ plane or a
parabolic equation in the x, ¢ and y, ¢ planes. Because of the possible parabolic feature of eq. (6)
it is reasonable to adopt a forward finite difference approximation with regard to the time step.
In order to obtain a stable hyperbolic system we may adopt central or backward stable finite
difference schemes with regard to the second left-hand side term of eq. (6). Explicit finite
difference schemes can be adopted provided that the following condition is satisfied (e.g.

Lapidus and Pinder, 1982)

10



At
—x<1 14
Ax (14)

Implicit schemes are not subject to such a limitation. The central finite difference
approximation has a smaller truncation error. The combination of either central or backward
space finite differences with the forward time difference are subject to a certain amount of
numerical dispersion. Choice of the central space difference for the second term of eq. (6) leads

to an implicit scheme. Choice of backward space difference for that term may lead to explicit

schemes as
C:.':l - C:,l: C::H - C:‘;.ls — C:—l,s - 2C;',‘s + :r”:l,s Cr”.l.v+l - 2C:,ls + C:‘s—l 15
A A& o (Ax)’ e (Ay)” )
cr-croocrtt-crtt ch.,-20r+Ccr,,  Ch L., —20m . +C"
r,s v S 4 Tns r-1, =aL +1, ( 52 1, +a 1,5+1 (Ay)ll; 1,51 (16)

where m is a superscript representing the time step; r is a subscript representing the longitudinal
nodal point number, and s is a subscript representing the transverse (vertical) nodal point

number.

Equation (15) yields the explicit numerical scheme

i At W A @At o
Cr,:l (1 + E) = Cr.: + -Zx—cr-"l-.l: + (Al:x)2 (Cr+l,.w - 2Cr,: + Cr-l,:)
alAt 17
+ (Ay)2 (C:,ls+l - zc:.ls + C:,ls—l)

As shown in the Appendix, the numerical scheme of eq. (17) is stable provided that the

following criteria are satisfied

2a,At 2alt < 1+At

+ —_—s —_—
(Aax) (A T Ax
2aAt
™ <1 (18)

Equation (16) yields the following explicit numerical scheme
cr ‘(1 ¥ 'A'L) =cr e 2o+ 2B (o
’ Ax oA T (Ax) "

-2Cr +Cr)

alt (19)
e

(Ay)2 C":l,:+l - 2Crm-1.s + C:l.s-l)

r



As shown in the Appendix, the numerical scheme of eq. (19) is stable provided that the following

criteria are satisfied
2a0,At 2a;
(&) Ax
2a,At _ 2aAt . At

<1

&y &) A
2aAt
™ <1 (20)

Complying with the last boundary condition of egs. (9) and (13) we consider that dC/dx
for the last longitudinal nodal point and the preceding nodal point are identical.

In fig. 2 we compare simulation results obtained by use of eq. (17) with those obtained by
use of eq. (19). The parameter 6, appearing in fig. 2, is defined as the value of y at which
C =0.01. This figure refers to the initial and boundary conditions of eq. (9),and C=1aty =0.
If the point identified by C = 0.01 is located between two adjacent vertical nodal points ys and
ys + 1 in which C = Cs and Cj 4 1, respectively, we apply a power series expansion in order to
identify the value of 8. We consider that in the interval Ay between ys and ys 4+ 1 the

concentration is given as

C=(C, - C,.)L(O)+C,., @)
where
6=(y-y,)/ &y (22)
We consider
L(®)=(1-6) (23)

where n is a power coefficient.

Introducing eq. (23) into eq. (21) and considering that C = Cs at ys we obtain

1
001-C,,, ) 24)

d=y,+Ay[1-
y" y (Cs—cﬂ-l

Because Ay is a small interval we apply n = 2 in all our simulations using eq. (24).
Figure 2 shows that values of § obtained by use of eq. (17) are larger by about 1.5 percent

than those of eq. (19). Such differences are negligible when practical use is considered.

12



When steady state conditions are established in the domain, we may consider

cHl=Cr=C, (25)
By introducing eq. (25) into eq. (17) we obtain
Cr,s 1 + ﬂ + %2_] = Cr—l..v [l + —(-IL] + EL Cr+l,s + ﬂ2 Cr,.\'-l + _a—A—x-Z—Cr..wl (26)
Ax  (Ay) Ax] Ax (Ay) (4y)

Basically when steady state conditions are established, eq. (6) becomes an elliptic partial
differential equation in the x, y plane. Eq. (26) indicates that each nodal point (r, s) in the
domain is associated with five unknown values of C in (r, s) and surrounding nodal points. The
constant coefficient multiplying Cr, 5, in the equation associated with the point (r, ), is the
dominant factor. Therefore, the solution of the set of linear equations represented by eq. (26) can
efficiently be obtained by the successive over-relaxation (SOR) method.

The iterative procedure is given by

G = (1- )8 + ol G + s + ) + ) @)

s r-l,s rs—1

where

a 2aAx a
o, =1+2—-1L+ i Qa =(1+—L)/a
° Ax  (ay) Ax) °

o, =(-9L)/a0; o, = a—Ax—2 /o,
Ax (Ay)

Ineq. (27), (n) is the number of the iteration; w is the over-relaxation coefficient.

(28)

In fig. 3 steady state values of § obtained by employing the numerical scheme of eq. (27)
and boundary conditions of eq. (9) are compared with values of & obtained by use of egs. (17)
and (19) for very long simulation time of ¢ = 100. All results, obtained by the various types of
numerical schemes, are practically identical.

Results shown in figs. 2 and 3 indicate that in an approximate time period ¢ = 2xy,y the
build-up of the region of interest (ROI) is completed. Where x5 is the horizontal extent of the
domain, and the ROI is defined as the region in which C 2 (.01. Due to the introduction of the

dimensionless coordinates of eq. (5), x;uqx also represents the dimensionless time period needed

13



for the advection of a fluid particle along the whole horizontal extent of the domain. Therefore,
results of fig. 3 provide some time scale with regard to the contamination process.

Figure 4 exemplifies the application of the numerical scheme of eq. (17) in conjunction
with the boundary conditions of eq. (13) to evaluate the contamination process and build-up of
the ROI when the contaminant flux is prescribed at y = 0. It seems that the build-up time period

of the ROI is not affected by the type of boundary condition of the domain shown in fig. 1.

Neglect of Longitudinal Dispersion
In the domain of fig. 1 contaminant transport in the longitudinal x direction is dominated
by advection. Therefore, numerical experiments with the complete neglect of the first right-hand
side term of eq. (6) are also performed in the framework of this study.
If effects of longitudinal dispersion are negligible then eq. (6) collapses to
aC aC _ d*C

—+—=a

x o x o

(29)

It is convenient to evaluate the applicability of eq. (29) by referring to the establishment
of steady state conditions in the domain. When steady state conditions are established eq. (29)
collapses to
%S = a%;c— (30)
Equation (30) is analogous to the typical diffusion or heat conduction equation in one
dimensional domain. Eq. (30) is a parabolic differential equation in the x, y domain. By the
employment of the relevant boundary conditions of eq. (9), the solution of eq. (30) is (Carslaw
and Jaeger, 1959)
C = erfe[y/(4ax)] 31)
where erfc is the complementary error function.

By the employment of the relevant boundary conditions of eq. (13), the solution of eq.

(30) is (Carslaw and Jaeger, 1959)
2
qr ax -y y
C=2£12 |— — |- 32
a [ r exP(4ax) Y erfc(zm ):l (32)
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In figs. 5(a) and 5(b) we compare values of & obtained by the employment of eq. (27)
subject to the boundary conditions of eq. (9) with results obtained by use of eq. (31). The major
objective of figs. 5(a) and 5(b) is to demonstrate the possible effect of the longitudinal dispersion
on the build-up of the ROI. Therefore, figs. 5(a) and 5(b) represent two different kinds of
numerical experiments. In the calculations represented by fig. S(a) we keep ar = S for all values
of a. In all the simulations, values of § obtained by use of eq. (27) are larger than those obtained
by use of eq. (31). However, differences between values of & calculated by use of the two
different equations are not significant. Values of § obtained in fig. 5(a) for a = 0.05 and a7, =5,
namely a7, = 100-a, are not much different from those obtained in fig 5(b) for a = 0.05 and a7 =
0.5, namely a7, = 10-a.

Figure 6 shows steady state concentration profiles obtained by use of eq. (27) subject to
the boundary conditions of eq. (9) and those obtained by use of eq. (31). Differences between
the two types of solution are very minor. Similar conclusion is arrived when employing eq. (27)
subject to the boundary conditions of eq. (13) and eq. (32).

The numerical solutions of eq. (30) are well documented in various types of diffusion and
heat conduction. However, under unsteady state conditions the simplified versions of the
numerical schemes given by egs. (17) and (19) can be applied. Since the order of the x
derivatives is one, the last artificial boundary condition of egs. (9) and (13), which refers to
x—oo, can be ignored.

The simplified version of eq. (17) is

e+ 8 )= e e e+ B - 262, + ) a3)
» Ax 4 Ax » (Ay) f » B
The stability criterion for this numerical scheme, as shown in the Appendix, is
2081 ¢ (34)
(4y)

When steady state conditions are established we apply the relationship of eq. (25) to

obtain from eq. (33)

-1 (Ay)2 - C ST G

anZ rs—1+ 2an Crs anZ r r-l,s (35)
V) . (Ay) '

15



Eq. (35) represents the implicit numerical scheme for the solution of the parabolic differential
equations given by eq. (30). This scheme is unconditionally stable.

The simplified version of eq. (19) is given as

ij‘(l+%)=€fs+£cm*‘ L (

Ax r-1,s W C”-l-l,s+l - 2C:ll,s + C:n—l,s—l) (36)

r

This numerical scheme is explicit like eq. (33). However, its stability criteria are
different, as shown in the Appendix. The criteria for stability of the numerical scheme of eq.

(36) are

2aAx  2aAt
[(_—) W]l P

When steady state conditions are established, we apply the relationship of eq. (25) to obtain from

eq. (36)
7. N2 Cr-l,s+1 - 2C‘r—l,s + Cr—l,s-—l) (38)

Eq. (38) represents the explicit numerical scheme for the solution of the parabolic differential

equation given by eq. (30). This scheme is subject to the stability criterion

2alAx
<1 39)
(Ay)’ (

The linear combination of egs. (35) and (38) produces the unconditionally stable scheme

of Crank-Nicolson
alAx +[ alAx :‘ alAx

e -,
2(ay)" (Ay)’ 2(ay)

= _Eéx__f Cr-l.s—l + [1 - _C-I—-Axf}cr—l,s + %Cr—l,ﬁ»l
2(Ay) (Ay) 2(Ay)

(40)

Although the possible presentation of the finite difference approximations of egs. (35),
(38) and (40) is well known and documented, we find it appropriate to compare the performance
of these schemes for the simulation of the establishment of the ROI in domains like the one of
fig. 1. In fig. 7 the numerical results obtained by use of egs. (35), (38) and (40) are compared
with the analytical solution of eq. (31).

16



The numerical scheme solution of eq. (33) converges to the steady state solution of eq.
(35) when t > xpgy.

The numerical solution of eq. (36) converges to the steady state solution of eq. (38) when
t> Xmax.

Figure 7 indicates that the numerical results obtained by the explicit schemes of eqgs. (36)
and (38) provide better fit to the analytical solution than the explicit scheme of eq. (33) and
implicit scheme of eq. (35). Values of § according to eq. (38) are smaller than those given by eq.
(35), as values of #C/dy2 are larger at x + Ax than at x.

In fig. 8 we compare the development of § obtained by eq. (19) with the development of
that parameter according to eq. (36). We also introduce the steady state value of & obtained by
eq. (31). Fig. 8 shows minor differences in values of & obtained by the different solutions.
However, eq. (19) implies a larger time period for the build-up of the ROI, than implied by eq.
(36). According to eq. (36) steady state, conditions are established and the build-up of the ROl is
completed at ¢t = xpgy. According to eq. (19) the ROI build-up is completed at ¢ = 2xyqy.
However, in the second half of that time period, changes in values of §, according to eq. (19) are

very minor.

The Boundary Layer (BL) Approximation

It is shown in the preceding section that the numerical solution of eq. (29) provides a
practical and acceptable approximation for the description of the build-up of the ROI. However,
some more and simpler approximations can be useful as shown hereafter.

The classical boundary layer (CBL) approximation has been used as a method for the
solution of partial differential equations by von-Karman and Pohlhausen (Schlichting, 1958).
They have applied this method to phenomena of fluid flow. Since then the method has been used
in a variety of topics associated with fluid flows, heat transfer and mass transfer (Ozisik, 1980).
The application of the CBL method to the calculation of transport phenomena is groundwater has

been demonstrated in numerous publications (e.g. Wooding, 1963, 1964 and 1971; Dagan, 1971;

17



Eldor and Dagan, 1972; Gelhar and Collins, 1971). Various studies (e.g. Rubin and Pinder,
1979; Rubin, 1983; Rubin and Pistiner, 1986; McElwee and Kemblowski, 1990) have employed
the CBL approach to analyze mineralization processes in groundwater.

Recent study of the author (Rubin, 1994) shows that the CBL method can greatly be
improved by specifying the value of the contaminant concentration at the top of the BL.
Therefore, the method is termed as the top specified BL (TSBL) approximation. According to
this method the ROI is defined as part of the domain in which the contaminant concentration
exceeds an acceptable defined value C1. The ROl is considered as a BL, and at
y = & the contaminant concentration is C = Ct. The value of §is given as

6 =08(x,1) 41

From practical view point we assume that contaminant concentration vanishes where the
contaminant concentration is lower by at least an order of magnitude than the acceptable level.
The contaminant concentration practically goes to zero at y = & where

8, =0,(x,2); 6,>9 42)

We assume that in the contaminated region, which is larger than the ROI

C=C,L(n), n=yl/é, 43)
where Cp is the value of Caty =0.

The ROI is extended between y =0 and y = 8. The ordinate y = § is termed as the top of
the BL which represents the boundary of the ROI. At that location

y=8 n=n;=818,; C=C;=C,L(n;) @4

We integrate eq. (29) along the vertical y coordinate between y = 0 and y = & and use

Leibniz’s theorem to obtain

%( J;" cay)+ %( J, cay)= —a[%ﬂ 45)

y=0
The value of L(7) should be (Rubin, 1994)
L(n)=(1-n) (46)

18



where n is a power coefficient determined by the best fit of the concentration profile represented
by eq. (43) to measured values of C.
Introducing egs. (43) and (46) into eq. (45) we obtain

d d
5(50c,,) + 5x-(a(,c,,) =an(n+1)C, /8, C))
According to egs. (44) and (46)
1
) C Y
—=] ~L 48
2-1-(g] @)
If the contaminant concentration is prescribed at y = 0, then eq. (9) implies
C =1 49)
If the contaminant mass flux is prescribed at y = 0, then egs. (10), (43) and (46) imply
an
Introduction of either one of egs. (49) or (50) into eq. (47) yields
d/cay, O (o2
5(50)+b;(50)=A (51)
where
A=2an(n+1) if C is prescribed at y=0 (52)
A=an(n+1) if q, is prescribed at y=0 (53)
If C is specified at y = 0, then we introduce eq. (49) into eq. (48) to obtain
5= 50[1 _ CT%] (54)
If gp is specified at y = 0, then we introduce eq. (50) into eq. (48) to obtain
1
C n
§=5,1- (——Tﬂ) (55)
qx0y
Equation (51) is subject to the initial and boundary conditions
8y = 6,(x,1)
6,(x,0)=0
6,(0,1)=0 (56)

19



Equation (51) subject to the initial and boundary conditions of eq. (56) can easily be

solved by the Laplace transform method to obtain

82 = Alt—(t— x)u(t - x)] (57)
where
U ifr>x
“("x)'{o if t<x (>8)

According to eq. (57) steady state conditions are established in the domain when ¢ = xpgy.
Egs. (52)—(58) provide analytical expressions for § and &. However, we find it appropriate also
to consider the numerical solution of eq. (51), as the basic features of this equation are not
changed if some non-uniformity is introduced into the domain of fig. 1. But the non-uniformity
of the domain may avoid the availability of a simple analytical solution of eq. (51). Then
numerical procedure should be used.

Equation (51) is a first order hyperbolic equation in the x, ¢ plane. We adopt the explicit-
implicit approach for the solution of this equation by finite difference approximation. By such

an approach eq. (51) yields
G (@) () (@)

r - e A
At Ax 59)
This expression yields the following explicit numerical scheme
2 \m+l At _ 2\ At 7 \m+l1
(8 [1+Xx-]_(50 R CINEY (60)

This numerical scheme is unconditionally stable.

In fig. 9 we compare the steady state values of 6, when C = 1 is prescribed at y = 0,
according to egs. (27), (31) and (57). The chosen value of n = 3, as suggested by Rubin (1994)
seems to be quite appropriate for the employment of the TSBL approximation. Some other tests
of the analytical solution of the TSBL approach have been performed by Rubin (1994). They
indicated that the TSBL provided very good approximation to the various solutions, with smaller
amount of appfoximation, of the diffusion-advection equation. We find it appropriate to

compare the analytical solution of eq. (57) with the numerical solution of eq. (60).
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In fig. 10 we compare the development of §, in a domain subject to contamination due to
prescribed C value at y = 0, as implied by eqgs. (57) and (60). This figure indicates that the
numerical scheme of eq. (60) converges quite well to the analytical steady state solution.
Differences in intermediate states are minor. However, the build-up of the ROl is completed,

according to eq. (60) in a time period longer than x;,y.

Discussion

This report concerns some possible approximate approaches that can be useful in initial
stages of evaluation and analysis of groundwater contamination. We introduce a simplified
conceptual model of an aquifer subject to contamination and present a hierarchy of
approximation methods that can be useful in the process of the evaluation of the contaminant
transport in the groundwater system. Due to the uniformity of the domain shown in fig. 1,
dimensionless variables could be used and all types of approximate methods could be employed.

It is indicated that whenever all types of approximation can be used, differences between
the various types of numerical solution results are very minor. However, the more complex the
domain, the smaller the amount of approximation that can be introduced into the basic flow and
transport equations. The higher the approximation that can be introduced into the system of the
basic equations, the simpler is the numerical solution, stability criteria are less restrictive, and
sometimes analytical solutions can be found. The largest amount of approximation is introduced
when using the BL approach.

The applicability of the BL method is the most restrictive from the point of view of non-
uniformity that can be considered in the aquifer. However, the TSBL method can also be applied
in a variety of non-uniformities. Therefore, we have considered uses of a numerical scheme for
this method even though the TSBL approach leads to analytical solutions when contaminant
transport in the domain of fig. 1 is evaluated.

It is suggested that initial evaluation of groundwater contamination would be done by use

of the simplified approaches and numerical schemes presented in this document. The basic
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schemes of this document can easily be extended to some more complicated systems than the one
shown in fig. 1. The initial evaluation by use of the approximate schemes can save much effort

needed to make the numerical calculations by using extremely sophisticated “black box models.”

Summary

A hierarchy of approximate approaches applicable for the simulation of groundwater
contamination is presented. First stage of approximation is introduced by adopting the Dupuit
approximation to an extremely simplified conceptual model of the aquifer. Then the equation of
diffusion-advection collapses to a differential equation incorporating a single advection term. As
advection is much more significant than diffusion in the direction of the flow in the domain, the
second stage of approximation is invited, in which longitudinal dispersion is neglected. Under
such conditions the large extent of the domain and uniformity of the aquifer in the vertical
direction invite using the BL approximation. We prefer to employ the TSBL approach due to its
higher reliability and broader scope of applications.

Each approximate method usage is exemplified by the development of appropriate finite
difference numerical schemes. The stability of each scheme is evaluated and analyzed. Insucha
manner a complete information regarding the advantages of the various types of approximate
methods is given. The reliability of the different types of approximation and numerical schemes
has been evaluated by comparing results of the various types of approximation with solutions
with smaller amount of approximation, or whenever possible comparing the numerical results

with analytical solutions.
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Appendix: Stability Analysis
ility of Eq. (1
We employ the procedure of von-Neumann (e.g. Lapidus and Pinder, 1982) in order to
analyze the stability of the numerical scheme given by eq. (17).
We introduce an initial line of error which is represented by a finite Fourier series as
follows:

Cm PIIN Iﬂ] rAx l/’2 sAy (Al)

We define the amplification factor & as
E=e™ (A2)

Introducing eqs. (A1) and (A2) into eq. (17) we obtain

5[1 + fxﬁ(l - e"/"“)] 1+ ("LA)’ (P —2+e7PM)+ %(e‘/’#" -2+ ™) (A3)
Y

We employ the following relationships
P e =2 cos ph
e® —e™ =2i sin Bh (Ad)

where f3is a dummy variable representing 31 or 32, and h is a dummy variable representing Ax

or Ay.
Introducing eq. (A4) into eq. (A3) we obtain
1+ ?Z;?t( os fAx-1)+ (ZaA)t (cos B,Ay—-1)
£= > (AS)

1+%(1—cos BAx+i sin BAx)

The numerical scheme of eq. (17) is stable provided that
lel<1 (A6)
Equations (AS5) and (A6) should yield the criteria for stability of eq. (17) when extreme
cases are considered. We consider
cos BAx =cos B,Ay=-1 (A7)
Introducing eq. (A7) into eq. (AS), the following stability criterion is obtained
2a,At  2aAt A

&y Ty (A8)
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Consider

cos B Ax=1; cos B,Ay=-1 (A9)
Introducing eq. (A9) into eq. (AS), the following stability criterion is obtained
A
i r<1 (A10)
(Ay)

Both criteria represented by egs. (A8) and (A10) should be satisfied in order that eq. (17)
may represent a stable numerical scheme.
Stability of eg. (19}
We introduce the line of error represented by egs. (A1) and (A2) into eq. (19) and obtain
At . a. At ;. .
1+ —(1-¢ P& :|= 1+ L (ePex — 2 4 7Pt
e 2 (1-e) ( )

Ax 2
At( ) (A1)
4+ z&ﬂmﬁ&mm_2+fww)
(Ay)
Introducing eq. (A4) into eq. (A11) we obtain
1+ 2aLA2t (cos BAx-1)+ —2—‘—1—A—§—(c0s BAx—i sin B Ax)(cos BAy—1)

&= At .
1+—A—x—(1—cos BAx+i sin BAx)

The numerical scheme of eq. (19) is stable provided that eq. (A6) is satisfied. Several
extreme cases should be analyzed.

Considering the relationships represented by eq. (A7) we obtain
2aAx  2a, <

(Ay)2 A <1 (A13)
2a,At  2aAt At
-——<I1+—

(ax) () " Ax

(Al4)

Considering the relationships given by eq. (A9), the stability criterion represented by eq.

(A10) is obtained.
Stability of eq. (33)
We introduce the line error represented by egs. (A1) and (A2) into eq. (33) and obtain
At ; air ¢ ; »
1+—(1-¢ #% ]=1+—-— Boty _ 9 4 g P Al5
e | e ST @15

Introducing eq. (A4) into eq. (A15) we obtain
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1+ —2£é£(cos B,Ay-1)

E= (Ay)2

= ; (A16)
1+—A;(1—cos BAx+i sin BAx)

The numerical scheme of eq. (33) is stable provided that eq. (A6) is satisfied. The

extreme case is represented by eq. (A9). It yields the stability criterion given by eq. (A10).

ility of eq. (3
We introduce the line error represented by egs. (Al) and (A2) into eq. (36) and obtain
el e e ) A
Introducing eq. (A4) into eq. (A17) we obtain
1+ 2a—Ai—(cos BAx—i sin B Ax)(cos B,Ay—1)
E= (Ay ) (A18)

1+%(1—cos BAx+i sin BAx)

The numerical scheme of eq. (36) is stable provided that eq. (A6) is satisfied. Several
extreme cases should be analyzed.

Considering the relationships represented by eq. (A7) we obtain

2aAx
<1
(Ay)’ . (A1)

Considering the relationships represented by eq. (A9) the criterion given by eq. (A10) is

obtained.
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