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Abstract
This report presents improvements in the classical boundary layer (CBL) approximation method
to obtain simple but robust initial characterizations of aquifer contamination processes.
Contaminants are considered to penetrate into the groundwater through the free surface of the
aquifer. By specifying concentration values for the boundary of the “region of interest” (ROI)
simulated as a boundary layer (BL), the CBL method is improved to obtain the “top specified
boundary layer” (TSBL) method. By use of the TSBL the ability to predict the development of
concentration profiles over both space and time is greatly improved. The TSBL approach
developed in this study can be useful for cases in which the contaminant concentration is
prescribed at the aquifer’s free surface as well as for cases in which the contaminant mass flux is
prescribed at the surface.

In the framework of this study the usage of a hierarchy of approximate methods, leading
to the TSBL approach, is presented and evaluated. It is considered that such a presentation
provides all information needed for the adoption of the TSBL application in various cases and

phenomena of groundwater contamination.
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ap, a1 ay...
BL

dimensionless transverse dispersivity
dimensionless longitudinal dispersivity
power series coefficients defined in eq. (32)
boundary layer

normalized contaminant concentration
normalized concentration at the aquifer’s surface
normalized concentration at the top of the BL
normalized concentration at yj

normalized concentration at yp
contaminant concentration [ML-3]
concentration of reference[ML-3]

classical boundary layer

represents & in figures

represents dy in figures

dispersion tensor [L2T-1]

longitudinal dispersion coefficient [L2T-1]
transverse dispersion coefficient [L2T-1]
gravitational acceleration

permeability [L2]

length scale[L]

power series

number of time step

power coefficient
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pressure [ML-1T-2]
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mass flux of the penetrating contaminant into the aquifer [ML2T-1]
relative penetrating mass flux

number of the nodal point in the longitudinal direction
region of interest

number of the nodal point in the vertical direction
dimensionless time

time [T]

time scale [T]

top specified boundary layer

a step function defined in eq. (42)

interstitial flow velocity [LT-1]

dimensionless longitudinal coordinate

length of the domain

starting point for the development of the ROI
longitudinal coordinate [L]

dimensionless vertical coordinate

value of y at which C = ()

value of y at which C= (3

vertical coordinate [L]

coefficients defined in eq. (20)

dimensionless thickness of the ROI

dimensionless ordinate of practically zero contaminant concentration
time step

longitudinal interval

vertical interval

dimensionless coordinate defined in eq. (51)

dimensionless coordinate of the boundary layer
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valueof yaty =6

fluid viscosity [ML-1T-1]
fluid density [ML-3]
porosity

over-relaxation coefficient



Introduction

The boundary layer (BL) approximation as an integral method for the solution of partial
differential equations dates back to von-Karman and Pohlhausen, who applied this method to
phenomena of fluid flow (Schlichling, 1968). Since then the BL approximation has been useful
in a variety of topics associated with fluid flows, heat transfer and mass transfer (Ozisik, 1980).

The application of the BL approximation to the calculation of transport phenomena in
groundwater was demonstrated in various studies. Wooding (1963; 1964; 1971) developed a BL
theory for plane vertical as well as horizontal flows in porous media, and showed that for large
Rayleigh or Peclet numbers the diffusion zone between two miscible fluids behaves like a BL.
Then diffusion-advection of arbitrary tracers can be solved into two parts corresponding to two
physical regions—the outer region, where diffusion is negligible and the inner region in which
diffusion is important but BL approximations are valid. By matching the inner and outer
expansions as explained by Van Dyke (1964) and Cole (1968) a complete description of the
tracer distribution in the domain is developed.

Dagan (1971) formulated the equation of diffusion-advection for a tracer in a domain
subject to steady-state conditions by applying a coordinate system based on the potential and
stream functions (Bachmat and Bear, 1964). Then by applying singular perturbations as
suggested by Wooding (1963, 1964) he analyzed the migration of the tracer front. In a later
study Eldor and Dagan (1972) extended the analysis to include radioactive decay and absorption.

Gelhar and Collins (1971) applied a BL approximation to develop general solutions for
one dimensional diffusion-advection of neutrally buoyant tracers in porous media.

Hunt extended the approach outlined by Wooding and Dagan for general cases
concerning the migration of neutrally buoyant tracers in heterogeneous aquifers.

Various studies (e.g. Rubin and Pinder, 1979; Rubin, 1983; Rubin and Pistiner, 1986;
McElwee and Kemblowski, 1990) employed the BL approximation to analyze mineralization

processes in groundwater.



All studies reviewed in preceding paragraphs apply the classical BL, namely CBL,
approximation. According to the CBL approach the diffusion-advection equation is solved for
certain classes of problems in which the transported quantity is prescribed at some boundary
locations. The contaminant is assumed to be practically distributed at a small region called BL.
This region is extended between the boundary of the prescribed quantity and the top of the BL, at
which the quantity concentration practically vanishes.

The objective of the present study is to apply a hierarchy of approximation methods to the
calculation and analysis of contamination of groundwater by contaminant penetrating through the
free surface of the aquifer. We intend to pay special attention to the CBL approach, improve its
performance and its scope of uses. Our ultimate goal is to develop simple but robust approach to

the initial characterization of aquifer contamination processes.

The Conceptual Model and Basic Formulation

We refer to a simplified conceptual model of an aquifer subject to contamination as
shown in fig. 1(a). The aquifer is unconfined, and saturated thickness is great enough so that the
Dupuit approximation can be useful. Flow direction and streamlines are almost horizontal. The
longitudinal x* axis represents the surface through which contaminants are introduced into the
aquifer. The y* axis is vertical in the downward direction.

Flow conditions and contaminant transport in the domain of fig. 1(a) are governed by the
following differential equations:

é=—£(Vp—P§) 1y

C* - =
_gr.,.v.vc*=v-(D-VC*) 2

where, ¢ is the specific discharge; k is the permeability; u is the fluid viscosity; p is the pressure;
p is the fluid density; g is the gravitational acceleration; C* is the contaminant concentration; V

is the interstitial flow velocity; D is the dispersion tensor; and ¢* is the time.
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The system of partial differential egs. (1) and (2) can be solved by various types of
numerical procedures. However, the Dupuit approximation is usually employed for the solution
of eq. (1). In the particular case of the domain shown in fig. 1(a), this approximation yields a
uniform horizontal flow velocity, provided that the permeability is uniform. Then eq. (2) is
represented as

oc* ac*  J'C* d’C*

ax Vo D R G

3

where x* and y* are the longitudinal and vertical coordinates, respectively; Dx and Dy are the
longitudinal and transverse dispersion coefficients, respectively.
As the domain is homogeneous and isotropic we may refer to the following
characteristics of the domain
Ly, t, =41V, C, 4)
where lp is an adopted unit length along the surface y* = 0; ¢ is the time corresponding to lg for
the velocity V; Cp is a concentration of reference. The value of Cg should somehow be
connected with prescribed boundary values or risk values of the contaminant concentration.
The characteristics of eq. (4) are used to nondimensionalize the variables of eq. (3) as
x=x*/l; y=y*ll; t=t*/t,; C=C*/(, 5)

Introducing these terms into eq. (3) we obtain
oC oC_ JC JC

RS a, e +a -éy—z— (6)
where a7, and a are the dimensionless longitudinal and transverse disperisivities which are
defined as

a, =D /(LV); a=D,/(i,V) 7

The following sections of this report are devoted to the development of solutions to eq.
(6) subject to initial and boundary conditions relevant to cases of groundwater contamination in
aquifers that can approximately be described by the conceptual model shown in fig. 1(a).

If at the boundary y = O the value of the contaminant concentration is prescribed, then it

seems reasonable to adopt
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C, = C*(x*,0,t%) ®
namely, contaminant concentrations are normalized with regard to the concentration at the x*

axis. Under such conditions eq. (6) is subject to the following initial and boundary conditions.
C=C(x,y,t) xy,t20
C(x,y,0)=0 except for C(x,0,0)=1.0

C(x,0,1)=1
C(0,y,£)=0
C(x,00,6)=0
%g——)O at x —» oo &))

In fig. 1(b) the dimensionless domain and quantities are shown for the prescribed
contaminant concentration at y = 0. Some of these quantities will be defined in following
sections of this report.

If at the boundary y = 0, is prescribed the contaminant mass flux which penetrates into the

groundwater, then
oC *
oy *

where, gp is the contaminant mass flux penetrating into the domain through the x* axis; and ¢ is

¢D, =—q, at y*=0 (10)

the porosity of the porous medium.

By introducing the normalized quantities of egs. (5) and (7) into eq. (10) we obtain
aC

a-a—y—=—qk at y=0 (11)
where, gr is the normalized flux of the penetrating contaminant
q
=2 12
qr 4G, (12)

where, g is the specific discharge of the aquifer flow.
The following initial and boundary conditions are applicable when the contaminant mass
flux is prescribed at y = 0.
C=C(x,y,t) xy,t20
C(x,y,0)=0

12



—= t y=0

» o’

C(0,y,1)=0

C(x,00,8) =0

%—)0 at x — oo (13)

In fig. 1(c) the dimensionless domain and quantities are shown for the prescribed

contaminant flux penetrating into groundwater at y = 0.

Direct Solution of the Contaminant Transport Equation

Equation (6) can be solved by various types of numerical procedures. In the framework
of the present study, we use finite difference schemes whose performance can easily be analyzed
and evaluated.

The initial and boundary conditions represented by egs. (9) and (13) indicate that when
the numerical simulation starts, all terms of eq. (6) have vanishing values. As long as both terms
of the right hand side of eq. (6) are very small, that equation is approximately a first order
hyperbolic equation in the x, ¢ plane. If the second term of the left-hand side is small then eq. (6)
is approximately a parabolic equation in the x, ¢ and y, ¢ planes. If steady state conditions are
established in the domain, then the first term of eq. (6) vanished. Under such conditions eq. (6)
is converted to an elliptic partial differential equation. However, if in steady state the first-right-
hand-side term is much smaller than the last term of eq. (6) then this equation is converted to a
parabolic equation in the x, y plane.

The preceding paragraph indicates that some prior studies of the nature of eq. (6) and its
relationship to the hydrologic characteristics of the aquifer under consideration may enable the
use of simplified schemes for the solution of eq. (6). However, in the first stage we develop a
stable numerical scheme for the solution of eq. (6).

Because of the possible parabolic feature of eq. (6), it is reasonable to adopt a forward

finite difference approximation with regard to Az.
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In order to obtain a stable hyperbolic system we may adopt central or backward stable
approximation scheme with regard to the second left-hand-side term of eq. (6). The central-
difference approximation has a smaller truncation error than the backward schemes. The
combination of either central or backward space difference with the forward time difference is
subject to a certain amount of numerical dispersion.

Explicit schemes can be adopted provided that the following condition is satisfied (e.g.

Lapidus and Pinder, 1982).

At
—<1 14
Ax 14

Implicit schemes are not subject to such a limitation. Choice of the central space
difference for the second left-hand-side term if eq. (6) leads to an implicit scheme. Choice of

backward space difference for that term may lead to explicit schemes, from which we choose to

apply the following one
cr 1(1 * ﬁ) =cn+ 2o
’ Ax ToA T (15)
a, At m m m alr m i "
+ (ALx)z (Cr+l.s - 2Cr.s + Cr—l.s) + W(C’""H - 2C"S t+ Cr':—l)

where, Ax, Ay and Ar are intervals of x, y and ¢, respectively; r is the number of the longitudinal
node; s is the number of the vertical node, m is the number of the time step.
By the employment of the procedure of von-Neumann (e.g. Lapidus an Pinder, 1982) the

following stability criteria for the scheme of eq. (15) are obtained.
2a,At  2aAt At
>+ —><1+—
(Ax)"  (Ay) Ax

2041 (16)
(4y)
When steady state conditions are established in the domain, we may consider
c'=Cr=C, (17)

By introducing eq. (17) into eq. (15) we obtain

C[Hzmw]:c el)iic, v 8o rc) 9

r-l,s Ax Ax r+l,s _(_5;)—2-



Basically, as stated before, when steady state conditions are established, eq. (6) becomes
an elliptic partial differential equation in the x, y plane. According to eq. (18) each nodal point
(r, s) in the domain is associated with five unknown values of C in (7, s) and surrounding nodal
points. The constant coefficient multiplying Cr, 5 is the dominant factor in all equations referring
to all nodal points of the domain. Therefore, the solution of the set of linear equations
represented by eq. (18) can efficiently be solved by the successive overrelaxation (SOR) method.

The iterative procedure is given by

Co = (1-@)CR + 0o, CoY +@,C0), + o (CE) + €2 )| (19)
where
a, =142 4 zaAf; a, —(1+&)/a0
Ax  (Ay)
a, alAx
o, =|—*1|/a,; a,= /o 20
2 (Ax) 0 3 |i(A_y)Tj| 0 ( )

Ineq. (19), (n) is the number of the iteration; @ is the overrelaxation coefficient.

Neglect of Longitudinal Dispersion

Due to the specific features of the domain shown in fig. 1 contaminants are transferred in
the x direction mainly due to the advection mechanism. On the other hand effective diffusion is
the major mechanism leading to contaminant transfer in the y direction. Some preliminary tests
exemplified in the following section “Calculations and Results” show that the contaminant
distribution in the domain is almost unaffected by the variation of aj.

Therefore, we may consider the complete neglect of the first right-hand-side term of eq.
(6). A quantitative evaluation of such an approach is given in the “Calculations and Results”
section.

The complete neglect of longitudinal dispersion modifies eq. (6) to

dC  C_ 9C

& x -

If the right hand side term of eq. (21) is very small, then eq. (21) is a hyperbolic first order

equation; otherwise it can be a parabolic type equation in the y, t or x, y planes. We apply
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considerations similar to those presented in the previous section and adopt the following explicit

scheme for the solution of eq. (21)
C,'";“(l + ﬂ) =C" LA ema -—a—éf—(
v Ax 3

Cm
Ax r=l,s (Ay)2

r,s+l

—2Cr +Cr) (22)

By the employment of the von-Neumann procedure (e.g. Lapidus and Pinder, 1982), the

following stability criterion of the numerical scheme, given by eq. (22), is obtained.

2aAt
<1 (23)
(ay)’

It should be noted that eq. (21) can be converted into a parabolic equation in the x, y plane

by the employment of the Laplace transform. However, the solution of the equation in the
Laplace transform plane and subsequent return to the x, y, t domain for implementation of the
various possible boundary conditions at y = 0 is complicated.
When steady state conditions are established in the domain eq. (21) collapses to
aCc —g 9*C

x o

This equation is analogous to the typical diffusion or heat conduction equation in a one

24

dimensional domain. Equation (24) is a parabolic partial differential equation in the x, y domain.
If we refer to the contamination case in which the contaminant concentration is prescribed at
y =0, we obtain by the analogy to heat conduction (Carslaw and Jaeger, 1959).

C= erfc[y/ (4ax)°'5] (25)
where, erfc is the complementary error function. If the constant flux of the penetrating

contaminant is prescribed at y = 0, then we obtain (Carslaw and Jaeger, 1959)

_ e[y 8% [ 2X0 ) y
C= . |:2\/: exp(4ax) y erfc(2 «/a_x)} (26)

The Top Specified Boundary Layer (TSBL) Approach

The proof of the applicability of eq. (21), as shown in the “Calculations and Results”
section, for the calculation of contaminant transport in the domain of fig. 1 encourages the use of

the boundary layer (BL) approximation to simulate contaminant transport. However, some
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changes and improvements are done in the framework of this study in order to increase the
reliability of the classical boundary layer (CBL) and make it applicable to a larger scope of
environmental problems.

To apply the BL approach we define a “region of interest” (ROI), in which the
contaminant concentration is higher than a certain acceptable level. The thickness of that region
is 8 where

6 =6(x,t) (27)

From practical view point we assume that contaminant concentration vanishes where the
contaminant concentration is lower by at least an order of magnitude than the acceptable level.
The contaminant concentration goes to zero at 8 where

O, =0,(x,1); 6,>0 (28)
We assume that in the contaminated region
C=C,L(n);, n=yl/é, (29)
where Cp is the contaminant concentration at y = 0. The ROI is extended between y = 0 and
y = 8. The ordinate y = § is termed as the top of the BL which simulates the boundary of the
ROI At that location
y=8 n=n,=38/8; C=C =C,L(n;) (30
namely contaminant concentration is specified as Cr at the top of the boundary layer. Therefore,
the method is termed as “top specified boundary layer” (TSBL).
We integrate eq. (21) along the vertical y coordinate between y = 0 and y = &y and use

Leibniz’s theorem to obtain
d ( (% d ( (% aC
'97( ) Cdy) + 5( ) Cdy) = —a[-&y—LO 31)

We consider that the function L(7) given in eq. (29) can be represented by a power series

L(n)=a, +an+an +.. (32)

where ag, a1. . . are constant coefficients.
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It should be noted that the number of terms incorporated in L(1) is determined only by

the desired fit of eq. (29) to measured values of C/Cp.
We consider the following boundary conditions for the determination of the coefficients

of the power series L(n)

L(0)=1; L(1)=0;

-‘i&=0 n=12,.. (33)
dn
Equations (32) and (33) imply
L(n)=(1-ny (34)

Equation (34) indicates that from a more general view point than that given by eq. (32), it is
possible to adopt values of n that are not integers.

Introducing eq. (20) into eq. (31), we obtain

d d _aC,L'(0)
5;(506‘1:) + E(SOC,,) = “W (35)
The following quantities are obtained by using eq. (34)
L(0)=-n; [ Lan=1/(n+1) (36)
In following paragraphs we discuss first the prescribed contaminant concentration at
y =0, followed by the prescribed contaminant flux at y = 0.
If constant contaminant concentration is prescribed at y = 0, we consider
C =1 37
Introducing egs. (36) and (37) into eq. (35) we obtain
%(602) + (—fx-(aoz) =2an(n+1) (38)
Equation (38) is subject to the following initial and boundary conditions
8, = 6,(x,1)
0,(x,0)=0
5,(0,1)=0 (40)

Equation (38), subject to the initial and boundary conditions, can easily be solved by the

Laplace transform method to obtain

18



62 =2an(n+1)t - (¢ — x)u(t - x)] @1)

where
1 t>x

u(t—x)= { 42)

0 t<x
According to eq. (41) steady state conditions are established in the domain when ¢ = xpgy,
where xmngx is the length of the domain.
Equations (39) and (41) provide analytical expressions for & and §in space and time.
These equations in conjunction with egs. (29) and (34) provide the information concerning the
contaminant distribution in the ROL.

If constant contaminant mass flux is prescribed at y = 0, we employ egs. (11), (29) and

(36) to obtain
20 7%,
=-"82_ 3282 43

7 al’(0) an “3)

Introducing egs. (36) and (40) into eq. (35), we obtain

0 0

5(5§)+5x—(6§)= an(n+1) (44)

Introducing egs. (34) and (43) into eq. (30), we obtain
5=8, 1-(ﬂ)" @45)

0,

Equation (44) is subject to the initial and boundary conditions given by eq. (40). It is also

solved by the Laplace transform to obtain
82 =an(n+ 1)[t —(t = x)u(t- x)] 46)
where values of u (¢ — x) are given in eq. (42).

Equations (45) and (46) provide analytical expressions for & and é. Equation (43) is
useful for the determination of Cp. Equations (29) and (34) provide the information concerning
the contaminant distribution in the ROL

Equations (43), (45) and (46) indicate that when steady state conditions are established in

the domain, the ROI starts to develop at x = xp, where
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& o ——”—-(CT ) @)

a n+1q_R

It should be noted that eq. (26) provides the following expression for Cp, namely C at

y=0
c,=24z |X 48)
" Jz\a
Considering that at x = xp the value of Cp is equal to CT, eq. (48) yields
2
a 4\q;

This expression and eq. (47) suggest the adoption of n = 3—4 for the TSBL
approximation. However, some more significant tests will be performed in the following section
for the evaluation of the reliability of the TSBL method for the calculation of contaminant

transport in the domain.

Calculations and Results

We have performed numerous comparative calculations aimed at the verification and
characterization of the TSBL approach. In the framework of our numerical experiments we have
tested the characteristics of all approximate approaches considered in the preceding sections of
this report. The hierarchy of the various approximation approaches is used to verify the
advantages of the TSBL approach and to show how the improvement provided by the TSBL is
adequate and broadens the possible uses of the CBL approximation method. Calculations are
presented in two parts. The first part concerns the use of the various approximation methods
when the contaminant concentration is prescribed at the free surface of the aquifer. The second

part concerns prescribed contaminant mass flux penetrating the free surface of the aquifer.

Prescribed Contaminant Concentration at the Aquifer Free Surface
The dimensionless domain and quantities relevant to this case are shown in fig. 1(a).

Contaminant concentration is normalized with regard to the given value of the contaminant

20



concentration at the aquifer free surface. It is considered that at the ROI the normalized
contaminant concentration is higher than 0.01. Therefore the boundary of this region is
identified by C7=0.01.

We apply eq. (15) and calculate changes in the concentration profiles as exemplified by
fig. 2. We also have calculated steady state profiles of the contaminant concentration by use of
eq. (19) and got profiles identical to those of fig. 2(d) for ¢ = 100. The dimensionless length of
the simulated region is xx = 50, and the build-up of the ROI is completed at ¢ = 100.
Therefore, we may conclude that the build-up requires a time period about twice as long as the
time needed for the advection of a fluid particle across the region subject to contamination. We
apply the contaminant concentration profile calculations in order to calculate the thickness & of
the region of interest. If the concentration line Cris located between the ordinates y1 and y», at
which C = C1 and C = Cy, respectively, we consider that the following power series can be used

for the concentration profile between y and yj.

C=(C,-G)1-08) +C, (50)
where
0=(y=x)/(»-») (51)
Consider that
C=C, at y=§ (52)
equations (50) and (51) yield
1
S=y+(n-n) 1—(%8) (53)

Such an approximation has been used for the determination of § in all numerical simulations
performed in the framework of this study.

Calculations of the build-up of the ROI are exemplified by fig. 3. Itis noted again that
results for ¢ = 100 are identical to those referring to steady state conditions. Simulations obtained

by use of eq. (15) at r = 100 completely converge to those of eq. (19).
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Figure 4 shows the build-up of the contaminant concentration profiles according to eq.
(22). In these simulations the effect of longitudinal dispersion is neglected. However,
concentration profiles in fig. 5 are very similar to those obtained in fig. 2. Figure 4(c) concerns
profiles identical to steady state profiles obtained by use of eq. (25). In fig. 5 we compare steady
state profiles obtained by use of eq. (19) with those obtained by eq. (25). They are almost
identical. The phenomenon of a very minor effect of the longitudinal dispersion on the shape of
the concentration profiles has been observed even in cases of ar = 100-a. However, steady state
conditions have been obtained according to eq. (22) in a shorter time period than predicted by
use of eq. (15).

Figure 6 shows the build-up of the ROI as predicted by use of eq. (22). As shown the
ROI build-up is almost completed at ¢ = 50 = xx.

Figure 7 compares the build-up of the ROI with and without consideration of the
longitudinal dispersion. Although there are some differences between the steady state values of
6, the build-up processes are very similar.

All data of fig. 4(c) are used to calculate profiles of C versus y/&. Values of & are
identified as locations in which C < (.001, namely C is smaller in an order of magnitude than C7.
As shown in fig. 8, all data of fig. 4(c) converge to a single curve by that procedure. The same
phenomenon of convergence to a single curve occurs in every set of data obtained by reference to
a very wide range of 0.01 < a < 1.0 in steady as well as unsteady state conditions. Therefore, it is
found sufficient to compare possible values of n, of the power series expansions, with profiles of
C versus y/dg in a single cross section. Such comparisons are given in fig. 9. This figure
indicates that for the whole range of tested a-values the best fit value for n is about 3. Fig. 9
shows that n = 2 is not an appropriate approximation for the description of the contaminant
concentration profiles. However, in the framework of the present study we have found that the
value of n = 2 had been the only one used in previous studies for calculations applying the

classical boundary layer (CBL) approach. The CBL does not define the top of the BL with
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specific values of C, and considers that at the top of the BL C = 0. But it is common to consider
that C = 0.01 at that location with no well-defined reason.

In fig. 10 we compare steady state values of & obtained by use of eq. (25) with those
predicted by egs. (39) and (41), where Jis defined as the ordinate y at which C = Cr=0.01. The
CBL approach eventually states that & is the appropriate value of §, and n = 2 is the common
used value for the power series expansion. Fig. 10(a) indicates that the inaccurate assumption of
n = 2 compensates the inaccurate assumption of § = &. Therefore, values of & obtained by use
of n =2 in eq. (41) are quite similar to values of § obtained by use of eq. (25). However, the
assumption of n = 2 provides values of § by use of eq. (39) which are considerably smaller than
those obtained by use of eq. (25). The assumption of n = 2 also provides inadequate description
of the contaminant distribution in the ROI, as indicated by fig. 9.

In fig. 10(b) the same comparison of fig. 10(a) is made with n = 3. Values of & implied
by eq. (41) are considerably higher than values of § obtained by use of eq. (25) and eq. (39).
This result indicates that if the value of Cris not specified, as in the CBL approach, then either
values of C are not well correlated with y/& or values of § are not well correlated with those
implied by the exact solution of the diffusion-advection equation. To obtain good correlation
with the C profiles the adopted value of n should be about 3. On the other hand in order to apply
the CBL approach and obtain adequate values of 6 the adopted value of n should be 2. The
TSBL method suggested by this study provides values of § almost identical to those predicted by
eq. (25) when n = 3, as shown in fig. 10(b). Therefore, the TSBL approach gives adequate
values of § as well as profiles of C.

In fig. 11 we compare steady state values of & as implied by all approximations. It seems
that values calculated with the TSBL approximation while n = 3 are quite well correlated with
those obtained both with and without consideration of longitudinal dispersion.

In fig. 12 we compare the rate of growth of § according to the TSBL approach with the
numerical solution given by eq. (22). Both methods predict that the build-up of the ROI is

completed at a dimensionless time period approximately equal to x;;45. Eventually eq. (41)
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shows that exactly at ¢ = x4y the build-up of the ROI is completed. Such a time period is needed
for the advection of a fluid particle along the extent of the contaminated region. It should be
noted, as implied by figs. 2 and 3, that the numerical scheme of eq. (15) yields longer build-up

time period.

Prescribed Contaminant Flux Penetrating Through the Aquifer Free Surface

In the previous section we applied a hierarchy of approximation solutions of the
diffusion-advection equation and showed that the TSBL approach provides better and more
accurate description of the contaminant distribution as well as the build-up of the ROI under
conditions of prescribed surface concentration. With regard to prescribed contaminant flux
penetrating into groundwater through the free surface of the aquifer, the contribution of the
TSBL approach can be even more significant as the CBL method is not documented as a method
applicable in cases of prescribed flux quantities.

Also in this section we define the ROI as shown in fig. 1(b). It is part of the domain in
which the normalized contaminant concentration is larger than 0.01, namely C7=0.01.
However, the value of Cp is subject to changes in time and along the free surface of the aquifer.

We have performed numerous calculations concerning the contamination process as
implied by the hierarchy of approximate methods considered in the theoretical background of
this report. Some of these calculation results are given graphically in this report.

We apply the numerical scheme of eq. (15) in conjunction with the finite difference
approximation of the boundary and initial conditions of eq. (13), and calculate the development
of contaminant concentration profiles in groundwater as described in fig. 13. We chose values of
a and gy, identical to those of fig. 2. However, changes in concentration profiles and the build-up
of the ROI also depend on the value of gg. At the downstream end of the domain at ¢ > 50, as
shown in figs. 13(b)-(d), Cp obtains values larger than unity. This result stems from the

comparatively high rate of the penetrating mass flux, gg of the contaminant.
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Contaminant profiles of fig. 13(d) considering ¢ = 100 have been almost identical to
steady state concentration profiles obtained by use of eq. (19). This result indicates that the
build-up of the ROI is completed in a time period identical to that needed for the build-up of that
region when contaminant concentration is prescribed at the aquifer’s free surface.

Figure 14 shows the build-up of the ROI as predicted by use of eq. (15) and the boundary
conditions of eq. (13). It should be noted that due to the comparatively high value of gg, fig. 14
shows that d starts to develop at a very short distance from the leading edge of the domain,
namely xp = (. In following calculations and examples we provide more details about high and
small values of gg.

Figure 15 shows the development of Cp in time and along the free surface of the aquifer
according to eq. (15) and the boundary conditions of eq. (13). Again, due to the comparatively
high value of gg, the value of Cp is larger than 0.01 even in close proximity to the leading edge
of the simulated domain. However, as will be shown in some other examples concerning low
values of gg and high values of g, at a range of 0 < x < xp, the value of Cp is smaller than 0.01
and § vanishes.

In the next stage we have made numerous simulations in which longitudinal dispersion
has been neglected. Practically, results concerning the build-up of the concentration profiles as
well as values of 6 and Cp have been almost identical to those obtained when longitudinal
dispersion was considered, even in cases of ay = 100 - a. From all these calculations we show in
fig. 16 the steady state profiles of C and compare some of these profiles with those obtained by
use of eq. (19). Fig. 16(b) shows that profiles obtained by use of eq. (26), in which a; is
neglected, are almost identical to those obtained by use of eq. (19), in which ay is considered.

We have performed numerous calculations similar to those presented in fig. 16 as well as
in intermediate stages. However, basically all these calculations have been coherent with the
steady state observations shown in figs. 16-18.

In fig. 17 we exemplify some of the tests carried out in the framework of evaluation of

the possible correlation between C/Cp and y/&y. From the obtained tables of concentration
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profiles represented in fig. 16(a) and similar figures which are not given in this report we
observed for each cross section the value of &) in which C/Cp < 0.001, provided that Cp < 1. If
Cp in parts of the domain has been larger than 1, then smaller values of C/Cp have been
considered for & in order that for all values of & the relationship of C £ 0.1 Ct was preserved.
Following the identification of the domain, profiles of C/Cp versus y/& have been depicted. Fig.
17 shows some of the results. This figure indicates that for the whole domain, for each tested set
of the basic parameters gg and a, the relationship between C/Cp and y/& is preserved. However,
another set of tests is needed in order to identify the effect of variability of gg and a on the
relationship between C/Cp and y/&. Such tests have been performed. Some of the results are
shown in fig. 18. This figure indicates that the best fit value of n depends upon the value of gg/a.
Such a result probably stems from the identity of this parameter to the vertical gradient of the
concentration profile at y = 0. Figs. 18(a) and 18(c) refer to very different values of gg and a, but
identical gr/a. Both of them suggest the use of n = 3. Figs. 8(b) and 8(d) by the same principle
imply n = 4. These results indicate that the optimum value of »n increases moderately with the
increase in gr/a.

In fig. 19 we provide a comparison between steady state values of dand & obtained by
the TSBL approximation, namely eqs. (45) and (46), and the value of § obtained by using eq.
(26). Values of § obtained by both methods are almost identical. It should be noted that
differences between values of dg in figs. 19(a) and 19(b) originate only from difference in values
of a, as implied by eq. (46), whereas differences between values of §'in these figures originate
from values of a as well as gg. The definition of & is solely dependent on C/Cp values whereas
d is defined by Cr, which is a concentration normalized with regard to a constant characteristic
quantity, Cy.

Because the value of gg in fig. 19(b) is much smaller than in fig. 19(a), there is a region,
extended up to xp, in fig. 19(b), where there is no ROI, namely 6§ =0 at 0 £ x < xp.

Figure 20 concerns the build-up, in time and along the free surface of the aquifer, of Cp,.

We present in this figure only steady state values of this parameter. However, basic phenomena
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are identical to steady as well as unsteady states. Values of Cp obtained by the TSBL
approximation namely eq. (43) are almost identical to those of eq. (48). The latter is derived
from the analytical solution given by eq. (26). Values of Cp in curves B are much smaller than
those of curves A due to the significant differences in values of gg.

Figure 21 shows the development of § in time and space. Values in this figure are
calculated by the TSBL method, namely egs. (45) and (46), as well as the numerical scheme of
eq. (22). Very minor differences in values of & have been obtained between the two methods.
The build-up of the RO, as predicted by both methods, is completed in a time period equal to the
time period of advection of a fluid particle along the whole extent of the domain. This is an
approximate outcome of using eqs. (45) and (46). If a; is considered, then the build-up of the

ROI is completed in a longer time period, as indicated by fig. 14.

Discussion

This study provides review and calculations of contaminant penetration and transport in a free
surface aquifer. However, its major theme concerns the development and use of the TSBL
approach.

The CBL approximation is widely used as an initial means for the evaluation of flow and
transport phenomena. Basically this approach represents an integral method for the solution of
partial differential equations. The CBL approximation has proved to be a convenient method for
the evaluation of heat and mass transfer in groundwater provided that the physical problem
involves prescribed boundary values for the transported quantity. Referring to contamination of
a free surface aquifer, the CBL approach can be proved to be useful provided that the
contaminant concentration is prescribed at the free surface of the aquifer. There are some typical
cases for an application, such as contamination of the aquifer originating from a floating lens of
non-aqueous-phase-liquid (NAPL). The oil (NAPL) lens releases miscible fractions into the
underlying aquifer. Probably groundwater which is in direct contact with that lens is saturated

with those miscible fractions. It seems, however, that large scale contamination of free surface
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aquifers, like contamination by nitrates, pesticides, herbicides, etc., is likely to be better
described by prescribed flux at the free surface of the aquifer.

The CBL approximation is not documented as a tool for the simulation of transport
phenomena in prescribed surface flux cases. The objective of this study was originally aimed at
the extension of the CBL approximation to prescribed surface flux. However, the set of tests,
calculations and analyses with the CBL approach indicate that this approach also lacks some
important coherencies in cases of prescribed contaminant concentration at the free surface of the
aquifer. Results show that the order of the power series considered for the approximation of the
contaminant concentration in the boundary layer region should be carefully considered, as it has
a very significant effect on the predicted rate of growth in time and space of the BL region. Use
of a second order power series, as is usually done, provides according to the CBL a reasonable
approximation for the rate of growth of the BL region, but fails to describe adequately the
contaminant concentration profiles within the region. Adoption of a third order power series
approximation provides an adequate means for the description of the profiles of contaminant
concentration in the boundary layer region, but fails to predict accurately the rate of growth of
this region.

It seems that the difficulties involved in use of the CBL approach originate from the lack
of specification of the upper edge, top, of the boundary layer region. The definition of
“vanishing contaminant concentration” is inappropriate, mainly in environmental problems,
where contaminant concentrations of ppbs are sometimes very significant. Therefore, the
definition of zero contaminant concentration at the top of the boundary layer is replaced by
“acceptable value” of that parameter. Practical interest is associated with the ROI, where
contaminant concentration exceeds the acceptable value. It is also suggested to normalize
contaminant concentrations in the domain with regard to a concentration that is about 100 times
larger than the acceptable value. The specification of the range of contaminant concentration
included in the BL, namely the definition of the ROI, represents the major contribution of this

study. As a result of this basic improvement of the CBL approach, we have succeeded in
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obtaining adequate descriptions of contaminant concentration profiles in the ROI and adequate
predictions of the rate of growth of the contaminated region.

The TSBL approach permits simulation of groundwater contamination when fluxes of the
contaminant penetrating through the aquifer’s free surface are prescribed.

All calculations presented in this study refer to idealized aquifers of very large extent
with uniform velocity distribution, flow parameters, etc. In such a system the applicability of the
TSBL approximation could conveniently be evaluated. However, uses of the TSBL
approximation can easily be extended to a variety of non-uniformities in the aquifer and the

groundwater system.

Summary

The top specified boundary layer (TSBL) approximation is developed for the calculation
of aquifer contamination by contaminants penetrating into groundwater through the aquifer’s free
surface. The method seems to be very attractive when Dupuit approximation is applied for the
description of flow conditions in the aquifer. In the framework of this study it is found that some
improvements are needed in order to increase the reliability and range of uses of the classical
boundary layer (CBL) approximation to environmental issues. Such improvements are provided
by the TSBL approach. According to this method the BL represents a region of interest (ROI) in
which contaminant concentration exceeds its acceptable value. The method provides an
adequate information about the rate of growth in time and space of the ROI, as well as the
distribution of contaminants in that region. The TSBL approach is useful in cases with
prescribed contaminant concentration as well as contaminant flux at the aquifer free surface.

The results of this study provide simple but robust approaches to the initial

characterization of contamination processes taking place in free surface aquifers.
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