Online Tools to Evaluate Oil and Gas Fields for CO2 Sequestration

Larry Wickstrom, James McDonald, Ronald A. Riley, Timothy R. Carr, Brandon Nuttall, John A. Rupp, Wilfrido Solano-Acosta, Charles W. Zuppann, and Beverly Seyler

Midcontinent Interactive Digital Carbon Atlas and Relational DataBase

MIDCARB

Midcontinent Interactive Digital Carbon Atlas and Relational dataBase

What is MIDCARB?

- It is a research consortium composed of the State Geological Survey's of Illinois, Indiana, Kansas, Kentucky, and Ohio, with funding from the US Department of Energy through the National Energy Technology Laboratory.
- The main objective is to evaluate the potential capacity for geologic sequestration of Carbon Dioxide in the member states.
- Obtaining realistic estimates of the potential amounts of carbon that can be stored in geologic reservoirs, and the locations of these reservoirs, is of vital importance to establishing this technology.

The MIDCARB Website

- To share the results of this research MIDCARB has constructed an online distributed Database Management and Geographic Information System for analyzing the spatial relationships and technical characteristics of large point sources of CO₂ and geologic sequestration options.
- The data presented on the MIDCARB web site actually reside on the local computers at each state geological survey.
- The MIDCARB system is the first DISTRIBUTED system of natural resource data focused on CO₂ sources and potential geologic sequestration sites.

MIDCARB

Primary Geologic Sequestration Target Reservoirs

- Oil and Gas Pools / Fields
- Coal Beds
- Deep Saline Aquifers

 Unconventional Reservoirs - tight gas sands; organic shales; solution salt cavities, etc.

What is Carbon Sequestration?

Why Sequester CO2?

Geologic Sequestration Reservoirs

Run a <u>Guided Tour</u> of the Map Interface

MIDCARB Calculators

Solubility of CO2 and Volumetrics

Click on any "Update" button to refresh all of the calculations.

Step 1 -- Modify Aquifer Temperature, Pressure, and Salinity as required.

		Aquifer	Temperature	90	🚽 Degre	es F		
		Aqı	uifer Pressure	1100				
		NaCl	Salinity concentration	200,000	• ppm			
			Upo	date				
CO2 Salubility	SCF/bb	l Water	lbs/bbl Water	scf/cu-ft	lbs/cu-ft	lbs/acre-ft	tonnes/acre-ft	mcf/acre-ft
	165		19.2	29.4	3.4	148,593	67.5	1280.1
(with salinty correction)	7	1	8.2	12.6	1.5	63,895	29.0	550.5

🥝 Internet

Step 2--Reservoir Volumetrics. Enter aquifer parameters to determine CO2 sequestration volumetrics.

Reservoir Thickness	20	feet							
Reservoir Area	12800	acres							
Porosity	6	%							
Convertice Volume	84,546	MMCF CO2							
Sequestration volume	4,462	tonnes * 1000							
Update									

🞒 Done

Data on CO2 properties from: Practical Aspects of CO2 Flooding, SPE Monograph Vol. 22

Sequestration Volume in Metric Tonnes and MCF - Microsoft Internet Explorer	_ B ×
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	
年 Back 🔹 🔿 🖌 🙆 🚰 😡 Search 🕋 Favorites 🔇 History 🛛 🔂 🕶 📅 🚽 🗮	Links
Address 🕼 http://abyss.kgs.ku.edu/pls/abyss/midcarb.co2_calc.volume	▼ 🔗 Go

Step 1--Modify Reservoir Temperature and Pressure as required.

Reservoir Temperature	100 🔽 Degrees F
Reservoir Pressure	1200 💌 psia
Upda	ite

Step 2--Reservoir Volumetrics.

Enter reservoir parameters or skip to step 2a.

Reservoir Thickness	10	feet									
Reservoir Area	640	acres									
Porosity	10	%									
Sequestration Volume	293,737	metric tonnes									
Update											

Step 2a--Replacement of Produced Fluid (Oil). Enter produced fluid.

Barrels Produced	1000	MBO
CO2 Sequestered	59.0	tonnes*1000
	1.0	MMCF
	Update	

Step 3--Volume of Reservoir Needed to Sequester a Given Volume of $\mathrm{CO2}$

h

Volume of CO2	70	Million Metric Tonnes
Reservoir Volume Required	152,517	acre-ft

2	Dor	16
2	Dor	16

What is Carbon Sequestration?

Why Sequester CO2?

Geologic Sequestration Reservoirs

Run a <u>Guided Tour</u> of the Map Interface

Map Coordinates: 1054259 meters (East), 3939576 meters (North) [UTM Zone 16 NAD83] 🙆 Internet

20 feature(s) have been identified in layer KY - CO2 Sources

łec	ID	PLANT	COMPANY_NAME	EPA_EDR	MIDCARB_ID	ANNUAL_CO2	ANNUAL_CO	ANNUAL_NOX	ANNUAL_SO2	PERCENT_COAL	PERCENT_OIL	PERCENT_GAS	ТҮРЕ
	2	Big Sandy	Kentucky Power Co	1353	КҮ1353	7570210	0	0	0	99.7524	0.2476	0	Electric Pow
	з	Cane Run	Louisville Gas & Electric Co	1363	KY1363	3594857.407	0	0	0	98.4184	0.0032	1.5784	Electric Pow
	4	Cooper	East Kentucky Power Coop Inc	1384	KY1384	1825466	0	0	0	99.8743	0.1257	0	Electric Pow
	5	D B Wilson	Big Rivers Electric Corp	6823	КҮ6823	3084165	0	0	0	99.9972	0.0028	0	Electric Pow
	6	Dale	East Kentucky Power Coop Inc	1385	KY1385	1240120.041	0	0	0	99.7429	0.2571	0	Electric Pow
	8	E W Brown	Kentucky Utilities Co	1355	KY1355	3784251.377	0	0	0	98.8113	0.2317	0.957	Electric Pow
	9	East Bend	Cincinnati Gas & Electric Co	6018	KY6018	5196246	0	0	0	99.7878	0.2122	0	Electric Pow
	10	Elmer Smith	Owensboro City of	1374	KY1374	3398229	0	0	0	99.8949	0.1051	0	Electric Pow
	11	Ghent	Kentucky Utilities Co	1356	KY1356	13309771	0	0	0	99.9379	0.0621	0	Electric Pow
0	12	Green River	Kentucky Utilities Co	1357	KY1357	863625	0	0	0	99.8026	0.1974	0	Electric Pow
1	13	H L Spurlock	East Kentucky Power Coop Inc	6041	KY6041	6853526	0	0	0	99.9443	0.0557	0	Electric Pow
2	16	HMP&L Station 2	Big Rivers Electric Corp	1382	KY1382	2490685	0	0	0	99.8118	0.1882	0	Electric Pow
3	18	K C Coleman	Big Rivers Electric Corp	1381	KY1381	3511592	0	0	0	99.8476	0	0.1524	Electric Pow
4	22	Mill Creek	Louisville Gas & Electric Co	1364	KY1364	9078842	0	0	0	99.4622	0.3949	0.1429	Electric Pow
5	25	Paradise	Tennessee Valley Authority	1378	KY1378	17134052	0	0	0	99.9847	0.0153	0	Electric Pow
6	28	R A Reid	Big Rivers Electric Corp	1383	KY1383	291683.463	0	0	0	98.8172	1.1828	0	Electric Pow
7	29	R D Green	Big Rivers Electric Corp	6639	КҮ6639	3447715	0	0	0	99.8855	0.1145	0	Electric Pow
8	30	Shawnee	Tennessee Valley Authority	1379	КҮ1379	10435320	0	0	0	99.8476	0.1524	0	Electric Pow
9	31	Trimble County	Louisville Gas & Electric Co	6071	KY6071	3920505	0	0	0	99.901	0.099	0	Electric Pow
0	32	Tyrone	Kentucky Utilities Co	1361	KY1361	174074	0	0	0	100	0	0	Electric Pow

100 mi

50

⊡

ess 🙋 http://hercules.kgs.ku.edu/website/midcarb/MIDCARB_NEW/viewer.htm

Ĉ •|

CALCULATION FOR CO₂ SEQUESTRATION VOLUMES IN OHIO OIL AND GAS FIELDS

- $p = \rho c o_2 x h x a x \phi x (1-Sw)/2200$
- **2** = Sequestration volume (metric tonnes) **co**₂ = CO₂ density (lbs/acre-ft)
- = Net thickness (feet)
- = Area (acres)
- = Porosity (percent)
- w = Water saturation (percent)
- **200 (lbs) = 1 metric tonne**

lress 🙋 http://hercules.kgs.ku.edu/website/midcarb/MIDCARB_NEW/viewer.htm

Mic	lcarb N	laps	Tool mod Active lay	e: Query er: Oll - CO2 S	ources	O	२, 🔐 🖑 🔍 🌶	6 📪 👭	s I 🌢	📤 井 😱 (R 0	
A	B	С	D	E	F	G	Н	I	J	K	L	ľ
ATITUDE	LONGITUDE	FACILITY_ID	FACILITY_ID _EGRID	FACILITY_ID _EPA	FACILITY_NAME	FACILITY_ TYPE	FACILITY_OVN ER_NAME	LAT_LONG _SOURCE	POVER_C APACITY_ MV	FUEL_TYP E_COMBU STED	LATEST_Y EAR	CO2_
38.69028	-83.48028	6031	0	OHD000724310	KILLEN STATION	UT	DAYTON POWER & LIGHT COMPANY		666.45	Coal	2002	37
40.25222	-80.64861	2828	0	9021264	CARDINAL	UT	NC	EPA	1880.46	Coal	2002	82
40.53083	-80.63111	2866	0	OHD041076266	W. H. SAMMIS	UT	OHIO EDISON COM PANY	EPA	2468.15	Coal	2002	1
39.59083	-81.67973	2872	0	9020970	MUSKINGUM RIVER	UT	OHIO POVER COM PANY	EPA	1529.61	Coal	2002	25
41.6925	-83.4375	2878	0	OHD000821389	BAYSHORE	UT	TOLEDO EDISON C OMPANY	EPA	2760	Coal	2002	10
38.86889	-84.22861	6019	0	OHD000816595	WH ZIMMER	UT	CINCINNATI GAS & ELECTRIC CO	EPA	1425.62	Diesel Oil	2002	
38.93472	-82.11584	8102	0	OHD000676775	GAVIN	UT	OHIO POVER COM PANY	EPA	2600	Coal	2002	1
38.99166	-84.29806	2830	0	OHD000724237	VALTER C BECKJORD	UT	CINCINNATI GAS & ELECTRIC CO	EPA	1432.9	Diesel Oil	2002	66
39.11306	-84.80305	2832	0	OHD000724245	MIAMI FORT STATION	UT	CINCINNATI GAS & ELECTRIC CO	EPA	1557.25	Diesel Oil	2002	5
41.90833	-80.76667	2835	0	OHD000772764	ASHTABULA	UT	CLEVELAND ELEC TRIC ILLUM CO	EPA	2580	Coal	2002	14
41.50417	-82.05	2836	0	2836	AVON LAKE	υτ	CLEVELAND ELEC TRIC ILLUM CO	EPA	884	Coal	2002	4
41.67083	-81.47916	2837	0	OHD094511607	EASTLAKE	UT	CLEVELAND ELEC TRIC ILLUM CO	EPA	1289	Coal	2002	64
40.18417	-81.88111	2840	0	OHD000816686	CONESVILLE PLANT	UT	COLUMBUS SOUTH ERN POVER CO	EPA	2174.9	Coal	2002	
38.63611	-83.69389	2850	0	OHD000721407	J.M. STUART	UT	CINCINNATI GAS & ELECTRIC CO	EPA	2440.8	Coal	2002	150
												96,23

<u>ile E</u>	dit <u>V</u> ie	ew <u>I</u> nsert F <u>o</u> rmat	Tools	<u>D</u> ata <u>W</u> ir	ndow j	<u>H</u> elp									
P33		▼ =													
A TIELDI D	B FMT	C Field_name	D DEPT H	E Netthic K	F TEMP	G PRESSUR F	H Porositi Y	 YEA B	J S V	K No. Vells	L ACRE S	M No. Pools	N CO2_DENSI TY	O CO2_SEQ_YOLU MF	I T
160	CLNN	LAFAYETTE, WEST	3904	18	90	1300	0.08	Û	50	79	8935	3	1931886	5,649,186	5 G
161	CLNN	MORGAN RUN	4017	25	100	1200	0.08	1972	27	53	3720	8	1009720.8	2,492,72	s G
948	RSRN	BALTIC	6390	40	130	2500	0.098	1965	20	549	100505	12	1938855.6	277,770,74	7 G
967	BKMN	BAKERSVILLE	7050	10	130	2200	0.15	1980	20	103	19977	3	1805997.6	19,679,13	5 G
					I		21	4,9:	32.	078	0		LY .		
							Metric	Ton	nes	;					
nes	ville	2002 CO2 ou	itput	=	50	019733									
						43	YEA	١R	S	of S	seq	uest	ratior	n poten	iti
							ln o	il r	e	serv	oir	s alo	one		
					1										1
1004	CLNN	MONROE-COSHOCTON CON	3338	12	100	1600	0.055	1917	40	3444	117511	33	1939291.2	41,019,843	а
1013	CLNN	GRATIOT-NEWCASTLE	3000	18	90	1000	0.1	1924	30	7043	177216	30	622036.8	63,134,518	3 C
1036	CLNN	PHILO CONSOLIDATED	4650	18	100	1400	0.065	1928	30	1863	164360	47	1763308.8	108,284,986	i C
														1,042,929,135	j∣⊤

lress 🙋 http://hercules.kgs.ku.edu/website/midcarb/MIDCARB_NEW/viewer.htm

OIL RECOVERY RESULTS IN SLIM-TUBE EXPERIMENT WITH CO_2 DISPLACING COPPER RIDGE SS OIL SAMPLE, APINO 3416925035, AT 107⁰ F

MMP is about 1500 psia, based on the trend line and the definition of thing 90% recovery at 1.2 HCPV of CO_2 injection.

ess 🩋	Image: http://hercules.kgs.ku.edu/website/midcarb/MIDCARB_NEW/viewer.htm														- (
Mi	dcarb	Maps	Tool mo Active la	de: Quer ver: OH -	y Oil and	Cas Fi	lde		0 Q Q	8 ^m	e / A	3 44 €	≢ 🖪 🚑 ±	34 🞞 🗔 🖪	20	
		ABÇ V 🕞		~ -1		1. 1. 1. 1. 1. 1. 1.	nov	» Orio	1		10	р 7	n = =		+.0 .00 8	
		✓ 00 4≣		··· 2	* A*		5070				• 10 •	D <i>1</i>	⊻ ≕ =		.00 +.0 🗡	* 4
Edit Vi	ew Insert	Format Lool	is <u>D</u> ata <u>W</u> indow	Help												
A	B		D	F	F	G	Н			K		M	N	0	Р	
ELDID	PLAY	FMTN_CO DE	FIELD_NAME	 DEPTH	Thick	темр	PRES	POROSITY	DISCOVER Y_YEAR	sv	NUMBER_ OF_VELLS	ACRES	No. Pools	CO2_DENS	SEQUESTR ATION_VOL UME	PRC ON
1369	KNOX	BKMN	BRANNONS FORK	7469	10	110	2600	0.15	1983	50	3	501	1	2172337.2	371025.3195	GAS
1392	KNOX	вкми	PLEASANT GROVE	6040	10	100	2100	0.15	1994	50	6	967	1	2144458.8	706940.3385	GAS
1397	KNOX	BSBN	BOCKBBIDGE	4334	35	90	1500	0.08	1993	50	37	4747	a	2056467.6	6212214 716	GAS
1401	KNOX	RSRN	COLFAX	4219	35	90	1500	0.08	1995	50	15	1615	1	2056467.6	2113487.838	
1359	KNOX	RSRN	LAKE OTTO	4962.5	35	100	1700	0.08	1997	50	18	2890	3	1995048	3669074.64	GAS
1393	KNOX	RSRN	RUSH CREEK	5327	35	100	1800	0.08	1988	50	115	13307	12	2040786	17281561.37	GAS
1390	KNOX	RSRN	FRAZEYBURG	5825	30	100	2000	0.08	1989	30	133	16901	6	2113966.8	27283316.75	GAS
1378	KNOX	RSRN	DORSET	6011	35	100	2100	0.08	1990	50	10	1687	2	2144458.8	2302173.997	GAS
1374	KNOX	RSRN	GRIGGS CORNERS	5808	35	100	2000	0.08	1995	50	3	403	1	2113966.8	542136.3948	GAS
1377	KNOX	RSRN	MUNSON HILL	5494	35	100	1900	0.08	1999	50	12	1613	1	2079554.4	2134568.066	GAS
											TOTAL PO	DOLS	34		62,616,499	
															CO2 SEQ	Pote
																-
																-
				ARE 201						<u>ک</u>			2	5	50 mi	ر_ {
art	🖸 🌔 🖏	🕑 "	🕒 Inbox	licroso	÷₩.Ove	erdu	🔀 Kans	as 🎏 🍋	rcIMS 🔟	page:	s 🔒 Öv	erdu 🤞	Query/] <i>></i> {{A] 🌪 🌚 🖂	10:24

dress 🛃 http://hercules.kgs.ku.edu/website/midcarb/MIDCARB_NEW/viewer.htm

Map Coordinates: -120404 meters (East), 4028519 meters (North) [UTM Zone 16 NAD83]

🥝 Internet

Shale in subsurface

DOE National Energy Technology Laboratory under cooperative agreement number DE-FC26-00NT40936

Ĉ •

p Coordinates: 249620 meters (East), 4015206 meters (North) [UTM Zone 16 NAD83]

Future of MIDCARB

- Improve Data and Coverages; Temp, salinity, MMIP, etc.
- Improved Distributed Management Tools
 - Multiple Servers (Hand-Off to Local Server)
- Modify the current MIDCARB Internet Map Server to support additional states.
- Educate decision makers and public on how to use the site.
 - Feasibility studies
 - Site planning
 - Regional assessments

Future of MIDCARB?

