Prototyping and testing a new volumetric curvature tool for modeling reservoir compartments and leakage pathways in the Arbuckle saline aquifer: *reducing uncertainty in CO*<sub>2</sub> *storage and permanence* 

Project Number (DE-FE0004566)

Jason Rush (W. Lynn Watney, Joint PI)

University of Kansas Center for Research Kansas Geological Survey

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO<sub>2</sub> Storage August 12-14, 2014

# **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary



# Benefit to the Program

• Program goal addressed:

Develop technologies that will support the industries' ability to predict  $CO_2$  storage capacity in geologic formations to within  $\pm$  30 percent.

• Program goal addressed:

This project will confirm — via a horizontal test boring whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If validated, a new fracture characterization tool could be used to predict  $CO_2$  storage capacity and containment, especially within paleokarst reservoirs.



#### **Project Overview**: Goals and Objectives

- Evaluate effectiveness of VC to identify the presence, extent, and impact of paleokarst heterogeneity on CO<sub>2</sub> sequestration within Arbuckle strata
  - Develop technologies that demonstrate 99% storage permanence and estimate capacity within  $\pm 30\%$ .
    - Predict **plume migration**...within fractured paleokarst strata using seismic VC
    - Predict **storage capacity**...within fractured paleokarst strata using seismic VC
    - Predict **seal integrity**...within fractured paleokarst strata using seismic VC
  - Success criteria
    - Merged & reprocessed PSTM volume reveals probable paleokarst
    - Within budget after landing horizontal test boring
    - VC-identified compartment boundaries confirmed by horizontal test boring



## **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary



## Methods

- Merge, reprocess, interpret PSDM 3-D seismic
- PSTM & PSDM VC-processing (Geo-Texture)
  - Pre-processing: Raw, Basic PCA, Enhanced PCA, Robust PCA
  - Lateral wavelength resolutions: high (~50-ft), medium (~150-ft), long (~500-ft)
- Build pre-spud fault & geocellular property models
- Locate, permit, drill, and log horizontal test boring
- KO & lateral, slimhole & hostile, logging program with Compact Well Shuttle™
  - Triple combo
  - Full-wave sonic
  - Borehole micro-imager\_
- Formation evaluation & image interpretation
- Seismic inversion, variance & ant track
- Construct discrete fracture network (DFN) Model
- Revise fault, facies, and property models
- Simulate & history match







## **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Setting & background
- Technical status
- Accomplishments
- Summary





### Age & Regional Setting





The University of Kansas

#### **Kansas Setting**



#### W-E Cross Section — Central Kansas Uplift



#### Karst Process-Based Model





#### Study Area — Bemis Shutts Field





#### Study Area — Bemis Shutts Field





#### Arbuckle Analog

Whiterockian Paleokarst Outcrop Analog — Nopah Range, CA





#### **Field Setting**

#### Core Description — Paleokarst Rock Fabrics



13

## **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary



#### **Time & Depth Migration**

Arbuckle PSTM



#### Arbuckle PSDM



#### Average Velocity to Arbuckle



#### Arbuckle Velocity & Well Control





#### Volumetric Curvature

- A measure of reflector shape:
  - Most-positive: anticlinal bending
  - *Most-negative*: synclinal bending
- Multi-trace geometric attribute calculated directly from the 3-D seismic volume
- Calculated using multiple seismic traces and a small vertical window
- The analysis box moves throughout the entire volume
- VC attributes can be output as a 3-D volume
- Provides quantitative information about lateral variations







#### **PSDM VC Processing Results**





#### Arbuckle PSDM VC Horizon-Extraction





#### Proposed Lateral to Test VC Attributes

#### **Objectives:**

- Land well outside paleocavern
- Drill through paleocavern
- TD in "flat-lying" host strata
- Run Triple, Sonic, Image tools

#### no mud losses!





#### Image Log Facies — Facies Model





| Code | Name              | Parent | Color | Pattern   |
|------|-------------------|--------|-------|-----------|
| )    | Dilational Fractu |        | -     | 1993 (MA) |
| 1    | Bedding-Dolomi    |        | -     | ビビコ       |
| 2    | Matrix-supporte   |        | -     |           |
| 3    | Crackle Breccia   |        | -     | ******    |
| 4    | Chaotic Breccia   | 1 8    | -     |           |



#### VC-indicated Compartments Consistent with Log Interpretations





#### **Formation Evaluation**



KANSAS GEOLOGICAL SURVEY The University of Kansas

#### **Formation Evaluation**



The University of Kansas

#### New Field-Wide Fault/Fracture Model



~201 Faults...thanks to Rock Deformation Research plug-in



#### VC-Faults Match Seismic Faults





#### **Dilational Fractures**

| Code | Name              | Parent | Color | Pattern                   |
|------|-------------------|--------|-------|---------------------------|
| )    | Dilational Fractu |        | -     | 1111                      |
| 1    | Bedding-Dolomi    |        | -     | $T^{\dagger}T^{\dagger}T$ |
| 2    | Matrix-supporte   |        | -     | 100                       |
| 3    | Crackle Breccia   |        | -     |                           |
| 4    | Chaotic Breccia   | 1      | -     |                           |

Crackle & Chaotic Breccia

Peritidal Dolostone & Matrix-Supported Breccia

evaporite karst in host strata

- strata-bound breccia
- anhydrite-filled molds
- geochemistry-sulfates





#### **Discrete Fracture Network Modeling**





#### 3-D Volumetric Curvature Volume





#### Filtered 3-D VC Geocellular Model





#### Seismic Attributes: Coherence vs VC



#### Seismic Attributes: Coherence vs VC



#### Seismic Attributes: Coherence vs VC



## **Geologic Findings & Interpretations**





- Fault-bounded doline confirmed
- Dolines coincident with
  VC-identified radial lineaments
- Interior drainage
- Headward-eroding escarpment
- Disappearing streams/springs/ fluvial plains



### **Dynamic Modeling Objectives**

### Explore the effect of fault transmissibility on:

- CO<sub>2</sub> Injectivity
- Storage capacity
- Vertical and horizontal CO<sub>2</sub> movement

simulation studies performed by Eugene Holubnyak (KGS)





### **Dynamic Simulations**

| Temperature                             | 122 °F                       |  |  |
|-----------------------------------------|------------------------------|--|--|
| Temperature Gradient                    | 0.008 °C/ft                  |  |  |
| Pressure                                | 2093 psi                     |  |  |
| Pressure Gradient                       | 0.42 psi/ft                  |  |  |
| Reservoir Depth                         | 4,500 – 4,900 ft             |  |  |
| Perforation Zone                        | 4,750 – 4,850 ft             |  |  |
| Perforation Length                      | 100 ft                       |  |  |
| Injection Period                        | 10 years                     |  |  |
| Injection Rate                          | 300, 200, 200, 150 tones/day |  |  |
| Total CO2 injected                      | 3M tones                     |  |  |
| <b>Reservoir CO<sub>2</sub> Density</b> | 580 kg/m <sup>3</sup>        |  |  |
| Fault Transmissibility                  | 1, 0, & 0.5                  |  |  |
| Fault Count                             | 201                          |  |  |



## CO<sub>2</sub> Injection



## CO<sub>2</sub> Injection



## CO<sub>2</sub> Injection

Permeability I (md) 2015-01-01 J layer: 71



### Fault Transmissibility Multiplier 1 vs. 0

#### **Injectivity Profile**



Well Bottom-hole Pressure



Gas Saturation 2117-01-31 J layer: 80





Gas Saturation 2119-12-31 J layer: 80





Gas Saturation 2117-01-31 K layer: 43





Gas Saturation 2119-12-31 K layer: 43





### Delta Pressure and Movement Fault Trans. Multiplier set to 1



KANSAS GEOLOGICAL SURVEY The University of Kansas

### Delta Pressure and Movement Fault Trans. Multiplier set to 0



SURVEY 45

## Simulation Findings to Date

#### Key Findings

Fault transmissibility effects for Arbukle Formation:

Injectivity and storage capacity are reduced

CO<sub>2</sub> movement is impacted by faults, but matrix control is dominant

#### **Future Plans**

- Analyze uncertainty of *flux between blocks*
- History match new models

Ways to estimate fault transmissibility





## **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary



# Accomplishments to Date



- Merged & reprocessed seismic
- PSTM & PSDM VC processing
- Built pre-spud model
- Drilled ~1800-ft lateral to test VC
- Ran extensive logging program
- Formation evaluation
- Simulated pre-spud model
- Inversion & genetic inversion
- Probability maps& property modeling
- ASME Peer Review (addressed recommendations)
- DFN modeling
- Contrast with other techniques
- Simulations fault
- Publication-ready figures





## **Presentation Outline**

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary



# Summary

- Key Findings
  - Direct *confirmation* of VC-identified, fault-bound, paleokarst doline
  - **PSDM VC attribute** consistent with structure maps and facies distribution (providing converging lines-of-evidence)
  - VC cost-effective
    - *Multi-component 3D seismic acquisition costly*
    - Shear-wave processing (i.e., Anisotropy volumes) costly
- Lessons Learned
  - VC attributes fractal, requires some constraints
  - Lost-in-hole tool insurance can overwhelm budget
- Future Plans
  - Analyze uncertainty of *flux between blocks*
  - History match and forecasting
  - Technology transfer publish results



# Bibliography

List peer reviewed publications generated from project per the format of the examples below

- Journal, one author:
  - Gaus, I., 2010, Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXX.com.
- Journal, multiple authors:
  - MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXX.com.
- <u>Publication</u>:
  - Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.