Integrated CCS for Kansas (ICKan) Project Number FE0029474

Martin Dubois Improved Hydrocarbon Recovery, LLC Tandis Bidgoli Kansas Geological Survey University of Kansas

U.S. Department of Energy National Energy Technology Laboratory DE-FOA0001584 Kickoff Meeting March 14 – 15, 2017

Presentation Outline

- Program benefits
- Project overview: goals and objectives
- Research methodology
- Expected outcomes
- Organization and communication
- Tasks and Subtasks
- Deliverables and milestones
- Project risks (Phase I and Phase II)
- Schedule
- Summary
- Appendix

Benefit to the Program

Benefit Statement

ICKan will address the handling of CO₂ emissions from the source and transport them to the storage site utilizing the combined knowledge and experience of The Linde Group including their own research on post-combustion 2nd Generation CO₂ capture currently sponsored by the DOE, the electrical utilities, refinery, and the latest R&D efforts such as DOE's Carbon Capture Simulation Initiative. The knowledge, experience, and lessons learned by the KGS regarding regional studies, site characterization, monitoring, EPA Class VI permitting, and incorporating NRAP models and tools will be bring best-practices to bear on proving up a commercial-scale carbon storage complex that is safe and dependable. In this Phase I: Integrated CCS Pre-Feasibility Study, ICKan will complete the formation of the CCS Coordination Team who will deliver a plan and strategy to address the technical and nontechnical challenges specific to commercial-scale deployment of a CO₂ storage project utilizing the experience and the expertise of the Team. A development plan will address technical requirements, economic feasibility, and public acceptance of an eventual storage project at the primary source-sink site at Westar Energy's Jeffrey Energy Center. High-level technical evaluations will also be made of sub-basin and potential CO₂ sources utilizing prior experience and methodologies developed previously and for this project. The ICKan and CCS Coordination Team will generate information that will allow DOE to make a determination of the proposed storage complex's level of readiness for additional development under Phase II, based upon the findings for commercial-scale capture, transportation, and storage sites identified as part of this investigation. Information acquired will be shared via the NETL-EDX data portal.

Project Overview: Goals & Objectives

- Identify and address major technical and nontechnical challenges of implementing CO₂ capture and transport and establishing secure geologic storage for CO₂ in Kansas
- Evaluate and develop a plan and strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Project Overview: Base Case Scenario

- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ and transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes CO₂ in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas

Base Case + Ethanol CO₂

Could reduce net cost through scaling and tariffs

- Capture Ethanol CO2
- Build extensive gathering system
- Join trunk line and transport to SW Kansas and possibly to Permian Basin for EOR
- Collect tariffs for transporting Ethanol CO2

January 2008 private study Gathering system connecting 44 ethanol plants

Technical Evaluations

Non-Technical Evaluations

- Capture & transportation economic feasibility (with or w/o ethanol component)
- Financial backing
- Financial assurance under Class VI
- State incentives
- Federal tax policy

- Pore space property rights including force unitization
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways
- Utility rate-payer obligations

- Identify stakeholders
- Foster relationships
- Public perception
- Political challenges
- Injection-induced seismicity 10

Success Criteria

- ✓ CCS Coordination
 Team
- Reservoirs characterized
- ✓ CO2 source assessments
- ✓ CO2 transportation assessment
- ✓ Implementation plan

- Go-No Go decision point in November 2017
- Tied to application for Phase II of CarbonSAFE

Methodology – Task 4: High level technical sub-basinal evaluation

Subtasks

- **1. Review storage capacity** of geologic complexes identified in this proposal and consider alternatives
- 2. Conduct high-level technical analysis of suitable geologic complexes using NRAP IAM- CS and other tools for integrated assessment.
- **3. Compare results using NRAP** with methods used in prior DOE contracts including regional and sub-basin CO2 storage and Class VI.
- **4. Develop an implementation plan** and strategy for commercial-scale, safe and effective CO2 storage.

Davis Ranch and John Creek Fields in the Forest City Basin (FCB)

- Davis Ranch and John Creek
- Largest oil fields in the area
- Close proximity to Jeffrey
- Combined they may be capable of storing 50+Mt CO2

John Creek Davis Ranch

Key well in John Creek Holaday #2 SWDW in the Arbuckle

Data is limited in FCB fields

- Few modern logs
- Very few Arbuckle penetrations
- No core data
- Minimal pressure data
- No 3D seismic
- Will need to collect additional data in later phases

all views at same scale

5 mi

Pleasant Prairie Field

- Discovered 1954
- Cumulative: 34.9 mmbo, 2.6 BCF
- Multizone; primarily Miss. Meramec and Chester
- 18.5 mi² closure, faulted on the west
- Operated by Casillas Petroleum
- Target storage zones: Viola – 5800-6000' and Arbuckle – 6000-6800'
- BHP 2100psi, BHT 125
- Preliminary storage capacity estimate = 170 Mt

Pleasant Prairie area well

Longwood 2 well

Methodology - High-level technical analysis of suitable geologic complexes

Reservoir seals

Characterize primary and secondary seals (NRAP's NSealR)

Fault reactivation induced seismicity

Map faults, characterize stress, fault slip and dilation tendency analysis (NRAP's STSF)

Wellbore risk

Evaluate existing and plugged well construction, plugging records, and estimate risk. (NRAP's WLAT)

3D cellular geologic model

Utilize existing well and engineering data, 3D seismic, to build cellular static models (Petrel)

Reservoir simulation model

Import cellular static models for simulating injecting and storing 50Mt. With GEM compositional simulator analyze capacity, injection rates, and pressure constrained by reservoir seal, fault and seismicity risk and wellbore risk studies. Compare with NRAP's REV

Utilize NRAP's DREAM for design risk and IAM-CS for accessing the integrated CCS project

Methodology – Task 5: High level technical CO2 source assessment for capture.

1. Review sources for suitability

Confirm volumes and conditions with operators

2. Collaborate with source operators

- Site visits for establishing relationships, evaluating siting, optimization
- Minimize existing plant operations disruption

3. Determine capture technology

- Coal-fired power newer generation of amine (solvent-based) capture
- Hydrogen reformers post-combustion solvent-based or sorbent-based (pressure or vacuum swing adsorption) capture from syngas or purge gas

4. Determine optimization opportunities

- Coal-fired power Reduce parasitic load. Multiple waste-heat sources targeted for steam generation for solvent regeneration
- Hydrogen reformers Combine with expansion of refinery steam generation to gain efficiencies

5. Preliminary engineering design

- Design for optimal scenario: economics and CO2 capture
- Optimize for overall most cost effective for capture and existing operations ²⁰

Site visits on Feb 15 in conjunction with ICKan kick-off meeting

Power plant capacity:

 3 x 800 MWe power plants located in St. Marys, KS with a total nameplate annual CO₂ emissions of 12.5 million tonnes.

Capture opportunity:

- Partial CO₂ capture (~350 MWe flue gas) can satisfy the entire ICKan CO₂ ICCS 50Mt+ over a 20 years project period
- **Optimization opportunities** for capturing waste heat identified

Steam Methane Reformer H₂ plant capacities:

- Two ~40,000 Nm3/hr PSA (Pressure swing adsorption) H₂ plants
- SMR furnace flue gases ~760,000 Tonnes/year.
 (30% of the ICKan CO2 ICCS needs)

Capture opportunity:

- Solvent based post-combustion capture from the reformer furnace flue gas would maximize CO₂ emissions reduction (~90% of total emissions).
- **Optimization opportunities** for efficiency gains through centralized steam generation possible.

Methodology – Task 6: High level technical assessment for CO2 transportation

- 1. Review current technology and research/studies on large-scale CO2 pipeline systems
- 2. Consider variety of business model options
 - Single point to point
 - Multiple points to single point
 - Inclusion of an ethanol CO2 gathering system in middle Midwest
- 3. Cost analysis and economic modeling
 - Utilize FE/NETL Transport Cost Model (Morgan and Grant)
 - Modify for local conditions

Economics – from paper studies

Estimated costs to capture, compress, transport CO2

- \$50-60/tonne from coal-fired power
- \$38/tonne from ethanol plants

		Costs per Tonne			
		Mohan etal (2008)	NEORI (2012)	Linde (today)	*Proprietary Study (2008)
CAPTURE	Coal-fired power	\$51	\$50	\$40	
	Refineries	\$45			
	Ethanol	\$9	\$28		\$26
TRANSPORTATION (Pipeline)		peline)	\$10		\$13

Mid -case for Mohan etal (2008) and NEORI (2012)

* Proprietary Study (2008): 3.4 MT/yr from 14 ethanol plants ,470 miles of pipeline

ICKan: Economic analysis of integrated project

- 1. Capture and compression: develop in-house model
- 2. Transportation: FE/NETL Transport Cost Model (Morgan and Grant)
- 3. Storage site preparation and operations: consider FE/NETL Saline Storage Cost Model (Grant and Morgan)

Expected Outcomes

Outcome

Comprehensive development and implementation plan encompassing technical requirements, economic feasibility and public acceptance of an eventual CCS project

Formation of a CCS team to address technical and non-technical challenges for commercial-scale deployment of a CO2 storage project

High-level technical evaluation of subbasin geologic sites

High-level technical evaluation CO2 sources and transportation

Results

Detailed injection, storage, and monitoring plan. Legal regulatory and public policy challenges identified and plan prepared for addressing the challenges.

Expand Phase I research team and partners/stakeholders for CarbonSAFE Phase II, Storage Complex Feasibility, DE-FOA-0001450

Identification of geologic sites likely to be capable of safely storing 50Mt+ CO2

Technical evaluations for CO2 capture from a coal-fired power plant and refinery hydrogen reformers optimized for economics. Economic analysis of transportation scenarios to reduce CO2 transportation for CCS.

Expected Outcomes - Products

Product

Economic model for Carbon Capture from flue gas from a retrofitted coal-fired power plant

Economic model for Carbon Capture from retrofitted hydrogen reformers

Data sets, results of analyses using NRAP tools (REV, NRAP-IAM-CS, NSealR, WLAT, DREAM), and comparison with traditional tools

Data set and results from project pipeline economic analysis using FE/NETL Transport Cost Model (Morgan and Grant)

Comprehensive economic analysis for **CO2** capture and transportation system for **Midwest ethanol plant**

Utility for CCS community

Augment, validate and/or improve upon other similar studies of large-scale projects

Augment, validate and/or improve upon other similar studies

Test cases for the NRAP tools for validation and/or improvements and modifications

Test case for the modeling tool and, potentially, useful modifications and enhancements

Though discussed in many "whitepapers" and the subject of private engineering studies, few rigorous analyses are available to the public

Organization: Phase I Research Team

18 team members, four subcontractors and KGS staff

Project Management & Coordination, Geological Characterization

Kansas Geological Survey University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist Lynn Watney, Senior Scientific Fellow Eugene Holubnyak, Research Scientist K. David Newell, Associate Scientist John Doveton, Senior Scientific Fellow Susan Stover, Outreach Manager Mina FazelAlavi, Engineering Research Asst. John Victorine, Research Asst., Programming Jennifer Hollenbah - CO2 Programs Manager

Improved Hydrocarbon Recovery, LLC

Lawrence, KS Martin Dubois, Joint-PI, Project Manager CO2 Source Assessments, Capture & Transportation, Economic Feasibility

Linde Group (Americas Division)

Houston, TX

Krish Krishnamurthy, Head of Group R&D

Kevin Watts, Dir. O&G Business Development

Energy, Environmental, Regulatory, & Business Law & Contracts

<u>Depew Gillen Rathbun & McInteer, LC</u> Wichita, KS

Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Policy Analysis, Public Outreach & Acceptance

<u>Great Plains Institute</u> Minneapolis, MN

Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Organization: Phase I Industry Partners

Four CO ₂ Sources	Five Oil Gas Companies
CO2 Sources	
Westar Energy	Kansas Oil & Gas Operators
Brad Loveless, Exec. Director Environ. Services	Blake Production Company, Inc.
Dan Wilkus, Director - Air Programs	(Davis Ranch and John Creek fields)
Mark Gettys, Business Manager	Austin Vernon, Vice President
Kansas City Board of Public Utilities	Knighton Oil Company, Inc.
Ingrid Seltzer, Director of Environmental Services	(John Creek Field)
Sunflower Electric Power Corporation	Earl M. Knighton, Jr., President
Clare Gustin, V.P. Member Services & Ext. Affairs	Casillas Petroleum Corp.
CHS, Inc. (McPherson Refinery)	(Pleasant Prairie Field)
Richard K. Leicht, Vice President of Refining	Chris K. Carson, V.P. Geology and Exploration
Rick Johnson, Vice President of Refining	Berexco, LLC
Regulatory	(Wellington, Cutter, and other O&G fields)
Kansas Department of Health & Environment	Dana Wreath, Vice President
Division of Environment	Stroke of Luck Energy & Exploration, LLC
John W. Mitchell, Director	(Leach & Newberry fields)
Bureau of Air	Ken Walker, Operator

John W. Mitchell, Director

Communication Plan

• Periodic scheduled meetings

- Monthly team meetings
- Quarterly all-teams meeting
- Biannual all-hands meetings (teams + participants)
- **Communicate project status**, confirm schedule, and reiterate upcoming deliverables.
- Ensure data and information are appropriately collected, integrated, modeled, and simulated
- Ensure decisions that critically impact the project are made in informed fashion and will meet the short- and long-term project goals.
- Communicate regularly with the DOE Project Manager

Task 1: Project Management and Planning Integrated CCS for Kansas (ICKan)

Subta	ask	Description	Comment
1.1	Fulfill requirements for NEPA		Completed
1.2	Conduct ICKan project kick-off meeting	CCS team and 7 industry partners. Acquainted with project/tasks and each other.	2/14 Attended by 32 individuals . Site visits 2/15
1.3	Regularly scheduled meetings and update tracking	Scheduled meetings: Team - monthly; Subteam - set by subteam; "All hands" - quarterly	
1.4 1.5 1.6	Monitor/control scope Monitor/control schedule Monitor/control risk	PIs review monthly, aided by monthly and quarterly meetings. Add risk/mitigation as identified	Additional risks identified in ICKan kick-off meeting
1.7	Maintain/revise DMP	Data to NETL-EDX	
1.8	Revisions to the PMP		Completed in negotiation period
1.9	Submit quarterly and other reports	Reports and auditing prescribed by Federal Assistance Reporting Checklist	
1.10	Develop integrated strategy for commercial- scale CCS	Build on and modify initial strategy throughout project life	

ICKan Kick-off Meeting, Feb 14

"All-Hands" meeting to jump-start the project

- 31 participants in day-long meeting
 - 7 industry partners sources and storage sites
 - All four 4 research team subcontractors
 - o KGS staff
- Comprehensive review, breakout work sessions
- Source site visits on second day

One of the more interesting discussions

Significant reductions in coal-fired power generation

- Westar and KCBPU are down to 52% carbonfueled power generation
- Westar wind is ~33% exceeding Kansas 2009 mandate for 20% from renewables by 2020.
- Southwest Power Pool set a record 52% of energy from wind on February 12

Tasks 2 and 3

Subt	ask	Description	Comment
Establish a Carbon Capture and S		Storage (CCS) Coordination Tea	m
2.1-3	Identify and recruit additional team members and stakeholders	Expand team to cover gaps in CCS coordination team required for Phase II.	Additional team member disciplines and stakeholders were
2.4	Meeting for Phase I team and recruited Phase II team members and stakeholders		identified by Phase I CCS team in kick-off meeting

Develop a plan to address challenges of a commercial-scale CCS Project Identify challenges to CCS and develop a plan to address them

3.1	Capture from anthropogenic	Work with project's CO2 sources	Initial discussions with
	sources	and oil industry partners to identify	CO2 sources in kick-off
		technical and legal, regulatory and	meeting (2/14) and site
		policy issues and develop plans to	tours (2/15).
3.2	Transportation and injection of	address them (in concert with Tasks	
	CO2	4, 5, and 6)	
3.3	CO2 storage in geologic		Initial discussions with oil
	complexes		operators in kick-off
			meeting (2/14).
			, , ,

Tasks 4 and 5

Description

Comment

Perform a high-level technical sub-basinal evaluation

4.1	Review storage capacity of geologic complexes and consider alternatives	Confirm storage capacity and if <50Mt consider alternatives	
4.2	High-level technical analysis of geologic complexes	Use traditional methods and tools to analyze capacity, and injection rates, constrained by seal and fault limits	
4.3	Compare NRAP tools with traditional methods	Using same data set utilize NRAP tools and compare results	
4.4	Develop an implementation plan and strategy	Constrained by seal breech and seismicity risk, develop an implementation plan	

Perform a high-level technical CO2 source assessment for capture

5.1	Review current technologies and selected CO2 sources for suitability	Collect and analyze data from sources and determine best technology	Site visits on 2/15 - data collection; define and discuss
5.2.	Determine novel technologies or approaches for CO2 capture	Define and evaluate optimization options	optimization options with source
5.3	Develop an implementation plan and strategy	In collaboration with sources develop plan for optimal capture	staffs

Tasks 6 and 7

Subtask		Description	Comment		
Perf	Perform a high-level technical assessment for CO2 transportation				
6.1	Review current technologies	Current technologies: compression to supercritical and pipeline transportation are best option.			
6.2	Consider novel technologies or approaches	Novel approaches could reduce costs: Economies of scale and tariffs from transporting ethanol CO2. Existing ROWs.			
6.3	Develop a plan for cost-efficient and secure infrastructure	Sensitivity studies involving scaling, financial and business options			

Technology Transfer

7.1	Maintain website on KGS server	Public side for dissemination of public data and reports. Private side to facilitate data exchange within the team.	http://www.kgs.k u.edu/PRS/ICKan /index.html
7.2	Public presentations	Periodic public presentations to variety of audiences to promote awareness, public acceptance, and industry interest	
7.3	Publications	Contribute to the growing body of CCS knowledge with peer-reviewed publications	

Milestones, Timeline and Criteria

Milestone	Completion Date	Verification
Finalize Project Management Plan	1/31/2017	Filed with DOE
ICKan project kickoff meeting	1/31/2017	Attendance roster and related files
Integrated strategy for commercial scale CCS	6/30/2018	Filed with the DOE
Application to DOE for Phase II	11/30/2017	Filed with the DOE (not part of Phase I)
Establish full CCS Coordination Team	10/31/2017	File with commitment letters with DOE
Meeting between Phase I and committed Phase II	10/31/2017	Attendance roster and related files

Deliverables and Relevance

Deliverable	Description	Relevance
Report: Integrated Strategy for Commercial-Scale CCS Project	Comprehensive strategy for integration of technical and non- technical components	Phase I Goal
Commitment letters from fully- formed CCS Coordination Team	Commitment to participate in Phase II study	Phase I Goal
Report: Plan to Address Challenges for Commercial-Scale CCS	Defined challenges and detailed plans to efficiently address them	Phase I Goal
Report: High-Level Sub-Basinal Evaluations	Identify and evaluate sites capable of safely storing >50Mt CO2	Phase I Goal
Report: High-Level CO2 Source Assessment for Capture	Characterize sources capable of supplying >50Mt CO2 and develop preliminary engineering design for	Phase I Goal
Report: High-Level Assessment for CO2 Transportation	Economic analysis of business and transportation scenarios to reduce CO2 transportation for CCS	Phase I Goal

Risk Matrix

Risk Matrix

Phase 1: Prefeasibility

Risk	Impact	Likelihood	Mitigation	Organization
Technical Risks				
Building & Maintaining CCS Team	Unable to form team	1	Foster public acceptance	KGS, IHR, GPI
Political climate prevents participation				
High cost limits participants				
Injection-induced seismicity & public acceptance				
KCP&L acquisition of Westar	Loss of CO2 source	3	Evaluate other CO2 sources	KGS, IHR
Resource Risks				
Personnel changes or overcommitments	Delay in schedule	3	Skill overlaps among team	KGS
Management Risks				
Conflicts between participants	Delay in schedule	1	History of collaboration	KGS, IHR

Risk Matrix

Phase II: Storage Complex Feasibility

Non-technical risks:

- Economic risks (i.e., high cost or feasibility of project)
- Gaining **public acceptance**
- Legal aspects of pore space and long-term liability
- Site access issues for field work
- **Obtaining permits** (federal and state) and right-of-ways
- Schedule and cost overruns

Technical risks:

- Long-term viability of coal-fired
 CO2 sources
- Adequacy of the site characterization
- Class VI permit
- Drilling and installation of wellbore and other instrumentation
- CO2 leakage risks
- Injection-induced earthquakes
- Detecting & locating CO2 38

Proposed Schedule

		2017						2018				٦						
Task	Task Name	1	2	3 4	1 5	6	7	8	ę	9 1	0	11 12	2 1	2	3	4	5	6
Task 1.0	Project Management & Planning Integrated CCS for Kansas (ICKan)																	
Subtask 1.1	Euffill requirements for National Environmental Policy Act (NEPA						_						_					-
Subtask 1.2	Conduct a kick-off meeting to set expectations								_									
Subtask 1.3	Conduct regularly scheduled meetings and update tracking								_									-
Subtask 1.4	Monitor and control project scope					i.			÷									
Subtask 1.5	Monitor and control project schedule																	
Subtask 1.6	Monitor and control project risk																	
Subtask 1.7	Maintain and revise the Data Management Plan including submital of data to NETL-EDX																	
Subtask 1.8	Revisions to the Project Management Plan after submission																	
Task 2 0	Establish a Carbon Canture & Storage (CCS) Coordination Team																	٦
Subtask 2.1	Labelity additional CCS team members																	-
Subtask 2.1	Identify additional stakeholders that should be added to the CCS team								_				_					-
Subtask 2.2	Berruit additional state holdes interstitional CCS team members identified												_					-
Subtask 2.3	Conduct a formal meeting that includes Phase I team & committed Phase II team members																	-
Oublash 2.4																		
Task 3.0	Develop a plan to address challenges of a commercial-scale CCS Project																	
Subtask 3.1	Identify challenges & develop a plan to address challenges for CO2 capture from anthropogenic sources																	
Subtask 3.2	Identify challenges & develop a plan to address challenges for CO2 transportation & injection																	
Subtask 3.3	Identify challenges & develop a plan to address challenges for CO2 storage in geologic complexes				1				_					1 1				
Task 4.0	Perform high level sub-basinal evaluations using NRAP & related DOE tools																	
Subtask 4.1	Review storage capacity of geologic complexes identified in this proposal & consider alternatives																	
Subtask 4.2	Conduct high-level technical analysis of suitable geologic complexes using NRAP-IAM-CS & other tools for integrated assessment																	
Subtask 4.3	Compare results using NRAP with methods used in prior DOE contracts including regional & subbasin CO2 storage & Class VI permit													÷				
Subtask 4.4	Develop an implementation plan & strategy for commercial-scale, safe & effective CO2 storage																	
T																		٦
Task 5.0	Perform a nigh level technical CO2 source assessment for capture			_						_								_
Subtask 5.1	Review current technologies & CO2 sources of team members & nearby sources using NATCARB, Global CO2 Storage Portal, & KDM																	
Subtask 5.2.	Determine novel technologies or approaches for CO2 capture																	
Subtask 5.3	Develop an implementation plan & strategy for cost effective & reliable carbon capture																	
Task 6.0	Perform a high level technical assessment for CO2 transportation																	
Subtask 6.1	Review current technologies or CO2 transportation																	
Subtask 6.2	Determine novel technologies or approaches for CO2 capture																	
Subtask 6.3	Develop a plan for cost-efficient & secure transportation infrastructure																	
Task 7.0	Technology Transfer																	
Subtask 7.1	Maintain website on KGS server to facilitate effective & efficient interaction of the team																	
Subtask 7.2	Public presentations																	
Subtask 7.3	Publications																	

Summary

Well qualified technical and non-technical team assembled for Phase I

- Excellent industry participation CO2 sources and storage sites
- Off to a good start with kick-off meeting and source site visits

Phase I work will identify key challenges and risks and develop plans to

address the challenges and reduce risk impacts. Key challenges and risks for CCS (from coal-fired power) include:

- Economics without incentives
- Change in administration and policy
- Seismicity and fault reactivation
- Class VI well application process
- Reliability of CO2 supply from coal-fired power plants in 2025

Phase I team focuses:

- Source assessment optimization of site-specific conditions
- Geologic studies seismicity risk; storage and injection capacity
- Transportation potential cost efficiencies in transporting ethanol CO2
- Legal, regulatory, and public policy issues prioritized and plans to address

Appendix: Funding Tables

Funding: Project Costs By Task

Total Proposal: 1/1/2017 - 6/30/2018												
Task	DOE	Cost Share	Total									
1	160,093	9,640	169,733									
2	165,482	18,436	183,918									
3	209,430	30,954	240,384									
4	248,407	5,260	253,667									
5	80,375	10,844	91,219									
6	80,375	10,844	91,219									
7	242,339	211,617	453,956									
Total	1,186,502	297,594	1,484,096									

Funding: Project Costs By Task

			r	Γ1				T2		Т3			T4				
Name	Job Title	MN	\$	DOE	KGS	MN	\$	DOE	KGS	MN	\$	DOE	KGS	MN	\$	DOE	KGS
Lynn Wateny	Sr. Scientist Fellow	0.12	1,563	1,563	-	0.08	969	969	-	0.12	1,563	1,563	-	0.12	1,563	1,563	-
Tandis Bidgoli	Assistant Scientist	1.30	10,004	10,004	-	0.65	4,886	4,886	-	1.30	10,004	10,004	-	1.30	10,004	10,004	-
Eugene Holubnyak	Associate Researcher	1.02	6,315	6,315	-	0.72	4,393	4,393	-	1.02	6,315	6,315	-	1.02	6,315	6,315	-
Jason Rush	Sr. Associate Researcher	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dave Newell	Associate Scientist	-	-	-	-	0.60	4,910	4,910	-	-	-	-	-	1.20	10,066	10,066	-
John Doveton	Sr. Scientist Fellow	-	-	-	-	1.00	5,535	5,535	-	-	-	-	-	1.75	9,894	9,894	-
John Victorine	Research Engineer	1.50	9,183	9,183	-	-	-	-	-	-	-	-	-	-	-	-	-
Mina FazelAlavi	Sr. Assistant Researcher	-	-	-	-	-	-	-	-	-	-	-	-	1.50	6,672	6,672	-
Susan Stover	Outreach Manager	1.45	9,063	6,922	2,141	0.45	2,813	672	2,141	1.45	9,063	6,922	2,141	-	-	-	-
Project Coordinator	Project Coordinator	7.00	32,175	32,175	-	4.00	18,000	18,000	-	-	-	-	-	-	-	-	-
GRA-Academic	GRA-Academic	-	-	-	-	-	-	-	-	-	-	-	-	9.00	35,474	35,474	-
GRA-Summer	GRA-Summer	-	-	-	-	-	-	-	-	-	-	-	-	1.50	5,754	5,754	-
GRA-Academic	GRA-Academic	-	-	-	-	-	-	-	-	-	-	-	-	4.50	17,262	17,262	-
GRA-Summer	GRA-Summer	-	-	-	-	-	-	-	-	-	-	-	-	1.50	5,754	5,754	-
Total Personnel		12.39	68,303	66,162	2,141	7.50	41,506	39,365	2,141	3.89	26,945	24,804	2,141	23.39	108,758	108,758	-
Eringo Ropofits																	
Senior Personnel			23 006	23 157	740		12 500	11.840	740		0 /31	8 681	740		13 6/3	13 6/3	
Staff (50%-89% FTF)			23,700	23,137			2 214	2 214	-		-		747		2 214	2 214	_
GRA (75% or less) - Academi	2		_	_	-				_		_	_	_		1 208	1 208	_
GRA (75% or less) - Summer	-		-	-	-		-	-	-		-	-	-		3.289	3.289	-
															-,,	-,	
Total Fringe Benefits			23,906	23,157	749		14,804	14,054	749		9,431	8,681	749		20,354	20,354	-
		12.20	02 200	00.010	2 000	7.50	56.210	52,410	2 000	2.00	26.075	22.495	2 000	22.20	100 110	100 110	
Total Payroll including Benefits		12.39	92,209	89,318	2,890	7.50	56,310	53,419	2,890	3.89	36,375	33,485	2,890	23.39	129,112	129,112	-
Linda Groun							16 250	12 000	2 250		27.017	22 222	5 582				
Great Plains Institute		-	-	-	-	-	26.496	21 107	5 200	-	55 030	44 024	11 006	-	-	-	-
Depew Gillen Pathbun & McIn	teer IC (DGP&M)	-	-	-	-	-	11 375	0 100	2,299	-	23,030	18 000	4 725	-	-	-	-
Improved Hydrocarbon Recov	Pry IIC		26 302	21 042	5 260	-	16 162	12 930	2,273		25,025	21 042	4,723 5,260		26 302	21.042	5 260
mproved mydrocarbon Recov	cry LLC	-	20,302	21,042	5,200	-	10,102	12,930	3,232	-	20,302	21,042	5,200	-	20,302	21,042	5,200
Total Subcontractors		0	26,302	21,042	5,260	0	70,283	56,227	14,057	0	132,874	106,299	26,575	0	26,302	21,042	5,260

Funding: Project Costs By Task

			T	5			Т	6				T7			To	tal	
Name	Job Title	MN	\$	DOE	KGS	MN	\$	DOE	KGS	MN	\$	DOE	KGS	MN	\$	DOE	KGS
Lynn Wateny	Sr. Scientist Fellow	0.12	1,563	1,563	-	0.12	1,563	1,563	-	0.12	1,563	1,563	-	0.79	10,349	10,349	-
Tandis Bidgoli	Assistant Scientist	1.30	10,004	10,004	-	1.30	10,004	10,004	-	1.30	10,004	10,004	-	8.46	64,913	64,913	-
Eugene Holubnyak	Associate Researcher	-	-	-	-	-	-	-	-	1.02	6,315	6,315	-	4.80	29,651	29,651	-
Jason Rush	Sr. Associate Researcher	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dave Newell	Associate Scientist	-	-	-	-	-	-	-	-	1.20	10,066	10,066	-	3.00	25,043	25,043	-
John Doveton	Sr. Scientist Fellow	-	-	-	-	-	-	-	-	1.75	9,894	9,894	-	4.50	25,323	25,323	-
John Victorine	Research Engineer	-	-	-	-	-	-	-	-	1.50	9,183	9,183	-	3.00	18,366	18,366	-
Mina FazelAlavi	Sr. Assistant Researcher	-	-	-	-	-	-	-	-	1.50	6,672	6,672	-	3.00	13,345	13,345	-
Susan Stover	Outreach Manager	-	-	-	-	-	-	-	-	1.45	9,063	6,922	2,141	4.80	30,000	21,436	8,564
Project Coordinator	Project Coordinator	-	-	-	-	-	-	-	-	7.00	32,175	32,175	-	18.00	82,350	82,350	-
GRA-Academic	GRA-Academic	-	-	-	-	-	-	-	-	-	-	-	-	9.00	35,474	35,474	-
GRA-Summer	GRA-Summer	-	-	-	-	-	-	-	-	-	-	-	-	1.50	5,754	5,754	-
GRA-Academic	GRA-Academic	-	-	-	-	-	-	-	-	-	-	-	-	4.50	17,262	17,262	-
GRA-Summer	GRA-Summer	-	-	-	-	-	-	-	-	-	-	-	-	1.50	5,754	5,754	-
Total Personnel		1.42	11,568	11,568	-	1.42	11,568	11,568	-	16.84	94,935	92,794	2,141	66.85	363,583	355,019	8,564
Fringe Benefits																	
Senior Personnel			4,049	4,049	-		4,049	4,049	-		31,290	30,541	749		98,957	95,960	2,997
Staff (50%-89% FTE)			-	-	-		-	-	-		2,214	2,214	-		6,642	6,642	-
GRA (75% or less) - Acaden	iic		-	-	-		-	-	-		-	-	-		1,208	1,208	-
GRA (75% or less) - Summer			-	-	-		-	-	-		-	-	-		3,289	3,289	-
Total Fringe Benefits			4,049	4,049	-		4,049	4,049	-		33,504	32,755	749		110,096	107,099	2,997
Total Payroll including Benefit	\$	1.42	15,616	15,616	-	1.42	15,616	15,616	-	16.84	128,439	125,549	2,890	66.85	473,678	462,117	11,561
Linde Group		-	27,917	22,333	5,583	-	27,917	22,333	5,583	-	-	-	-	-	100,000	80,000	20,000
Great Plains Institute		-	-	-	-	-	-	-	-	-	-	-	-	-	81,526	65,221	16,305
Depew Gillen Rathbun & Mcl	nteer, LC (DGR&M)	-	-	-	-	-	-	-	-	-	-	-	-	-	35,000	28,000	7,000
Improved Hydrocarbon Reco	very LLC	-	26,302	21,042	5,260	-	26,302	21,042	5,260	-	26,302	21,042	5,260	-	173,975	139,180	34,795
						-											
Total Subcontractors		0	54,219	43,375	10,844	0	54,219	43,375	10,844	0	26,302	21,042	5,260	0	390,501	312,401	78,100

Funding: By Recipient Organization

			No	n-Federal		
	D	OE Cost	C	ost Share		Total
KU/KGS	\$	462,119	\$	11,562	\$	473,681
Supplies		-		-		-
Equipment		-		-		-
Other		31,082		-		31,082
Tuition		27,648		-		27,648
KU Total		520,849		11,562		532,411
Linde Group		80,000		20,000		100,000
GPI		65,221		16,305		81,526
DGR&M		28,000		7,000		35,000
IHR		139,180		34,795		173,975
F&A		353,252		5,954		359,206
Software		-		201,978		201,978
Total	\$1	1,186,502	\$	297,594	\$1	1,484,096

Funding: By Source & Quarter

Funding Source	Type	Total				
DOE	Cash	\$ 1,186,502		2017		2018
KU	In-kind	17,516		2017		2010
Linde Group	In-kind	20.000	QI (Jan-Mar)	\$182,046	\$	219,966
CDI	In kind	16 205	Q2 (Apr-Jun)	200,433		219,966
		10,505	Q3 (Jul-Sep)	200,433		-
DGR&M	In-kind	7,000	04 (Oct-Dec)	163,659		_
IHR	In-kind	34,795	Total	\$746.570	\$	/30 031
Schlumberger	In-kind	201,978	10tal	\$740,370	ψ	437,731
Total		\$ 1,484,096				

Appendix: Bibliography