High-level Economic Analysis for CO2 Capture, Compression and Transportation

Dane McFarlane Great Plains Institute dmcfarlane@gpisd.net

Martin K. Dubois Improved Hydrocarbon Recovery, LLC mdubois@ihr-llc.com

> In collaboration with Kansas Geological Survey

Context

We outline a variety of scenarios for capture and transportation of large CO2 volumes that are economic at **\$70-100 oil**.

4.3 million tonne/yr could be captured and transported to Kansas oil fields for **\$35-\$42 per tonne** (~\$2/mcf).

Proposed **45Q credits (ramp to \$35/tonne** -\$1.85/mcf) make the business proposition very attractive.

4.3 Mt/yr (221 mmcf/d) used for EOR could increase production in Kansas by 28% (10 million BO/yr).

Outline

Focus mainly on CO2 capture from ethanol plants and transportation to EOR storage sites

- 1. Basis for capital and operating costs (CapX and OpX)
- 2. Describe financial modeling and assumptions
- 3. Economic analysis for multiple scenarios, small to very large
 - Summary of average costs
 - All the details for one scenario
 - Less detail for others
 - Transportation from larger industrial sources (power and refinery)
- 4. Summary and Discussion

Handy conversions, metrics and relationships

Conversions

- 6.624# CO2 / gallon ethanol
- 1 tonne = 1.1 tons
- 1 tonne CO2 = 19 mcf

Scales of CO2 sources

- Small Ethanol (55 mgy)
 8.6 mmcfd
- Large Ethanol (313 mgy) 50 mmcfd
- Coffeyville fertilizer plant 40 mmcfd
- Jeffrey Energy Center 650 mmcfd

0.17 million tonnes/yr0.94 million tonnes/yr0.8 million tonnes/yr12.5 million tonnes/yr

Other

- Net Utilization (CO2 stored EOR) ~ 8mcf/BO (0.42 tonne/BO)
 - ✓ 2.4 million BO recovered for million tonnes of CO2
- Proposed 45Q credits Ramps to \$35/tonne \$1.84/mcf \$0.116/gal eth
- Possible LCFS credits \$70/tonne \$3.68/mcf \$0.232/gal eth

Assumptions and methodology for simple financial model

- All financed in same manner: Ethanol plant capture, dehydration, and compression and pipeline construction
- All operations begin simultaneously: Capture facilities, pipeline, and sales points (oil fields)
- ✓ Twenty-two year project
- ✓ Two year construction phase
- \checkmark 20-year operations and amortization
- ✓ Zero inflation
- Determine CO2 price required for CO2 to provide a specified ROR (NPV=0)

Two Finance Scenarios

Weighted Average Return = 10.0% Taxable Bond BBB- (50%@5%) Regular LLC (50%@15%)

Weighted Average Return = 6.7% Tax-Exempt PAB BBB (55%@4%) Publicly Traded MLP (45%@10%)

Basis for CapX and OpX for Ethanol Plant Capture, Dehydration and Compression

Capital Expense

- Cost data for three plant sizes
 from DOE-funded project reports
- Compression drives most of the cost
- Regression analysis equation related to volume in MGY

CapX (\$million) = 9 + 0.146* MGY

(MGY is plant size in million gallons per year)

Operating Expense

- Cost data for two 55 MGY plants from DOE-funded project reports
- Report cost data \$0.0732/kWh.
 Average Kansas industrial -\$0.0709/kWh
- Assumes electrical costs are main OpX and are directly proportional to HP

OpX (\$) = \$8.58/tonne

Pipeline assumptions and cost model

FE/NETL CO2 Transport Cost Model

Grant & Morgan, 2014

FE/NETL CO2 Transport Cost Model: Main Interface and Financial Model

Solve for Break-even First Year Price for

- NETL model provides itemized costs for capital and O&M
- Added an input/output table to calculate pipeline network segment costs

A. First year price per tonne	2011\$/tonne	2011\$/tonne	2014\$/	tonne																	
		first yr of proj	first yr o	ftransp																	
Price to Transport CO2 by Pipeline	2.10	2.10		2.29																	
		Run																			
Number of pumps	1			Inputs			10.00	Pipeline Dis	ismeter				6	epital Cost					Annua	O&M Cost	
		/		1.000	-			ne		100	100	111	1111		121	- MA -	100	1.000	10.0	- 7 818	1.000
length of nineline	26.6	Ni l																			
conger or priperine	20.0		21		1000		Min	nirmann	Pipeline										Fipeline related		
Key Outputs		ID Length Pum	ph Annual CO2	fector	Pressure	Pressure E	ievation Diar	meter	Diameter	Materials	Labor	NOW-Damages	Miscellaneous	CO2 Surge Tanks	system	Pumps	Total Capital	Pipeline O&M	pumps O&M	puttings	operating expenses
Calculated Minimum Inner Diameter for Pipe	5.15 ii	1 2 2016	1.1.1.1	Decimal													100 C	1000			
Pipeline Nominal Diameter	6 i	DEFAULT 50 1	Misrie/yr	0.8	2200	1200	0 12	2.03	16.00	\$ 13,604,459 77	\$ 33,196,655.17	5 11,437,733.93	\$ 11,230,476.86	\$1,244,743.66	5 111,907 19	52,695,877 77	573,801,854 36	5 423,845.47	5 162,101 14	51,413,050 29	51,996,996.91
Net Present Value (NPV) of Cash to Owners	-8,024,583 2	01 20 44.6 2	1.24	0.8	2200	1600	0 6	6.97	8.00	\$ 4,879,941.37	\$ 19,083,196.43	\$ 3,869,035.76	\$ 5,346,122.29	\$ 1,244,743.66	\$ 111,907.19	\$ 930,929.42	\$ 35,465,876.12	\$ 378,087.74	\$ 91,503.21	5 413,138.67	\$ 882,729.63
Rate of Return on Weighted Debt and Equity	NA	15 47.0 2	0.30	0.6	2200	1600	0 4	11	6.00	54,193,644,03	5 19,063,204,41	5 7 829 448 74	54,450,339,26	51,244,743.66	5111,907,19	5 352,543.05	5 32,538,360.04	5 404,778.52	5 60,367 76	5 100,276 38	5 573,422.66
		26 0.7 1	0.14	0.8	2200	1400	0 1	1.47	4.00	5 122,136.51	\$ 643,831.56	5 88, 110.47	5 195, 310, 96	\$ 1,244,743.66	5 111,907 19	5 125,293 96	\$ 2,531,332 31	\$ 6,229.86	\$ \$9,277.71	\$ 22,562.19	\$ 88,069.76
Summary of Costs	Real 2011\$	31 8.6 1	1.06	0.8	2200	1600	0 5	5.17	6.00	\$ 611,672.34	\$ 3,731,900.99	\$ 607,501.08	\$ 922,203.07	\$1,244,743.66	\$ 111,907,19	\$ 410,777.54	\$ 7,840,705.87	\$ 72,682.32	\$ 70,697.14	\$ 176,987.81	\$ 320,367.27
Summary of Costs	Real 20115	27 3.5 1	0.14	0.8	2200	1600	0 1	1.93	4.00	\$ \$17,507.60	\$ 1,669,909 43	\$ 227,051.02	\$ 372,894.08	\$ 1,244,743.66	5 111,907,19	5 125,291.96	\$ 4,069,304.94	5 29,756.54	5 59,277 71	\$ 22,562.19	\$ 111,596.64
	2011\$	28 81.9 2	0.96	0.8	2250	1600	0 5	. 92	6.00	5 2.827.384.24	\$ 12 868 028 48	\$2,119,909,05	5 8.025.688.27	\$ 1.244.743.66	\$ 111.907.19	5 773 356 18	\$ 22,972,017,03	\$ 270 335 03	5 85 200 28	\$ 327,903,74	\$ 683,429,05
Capital Costs	21,980,185	30 46.1 2	0.30	0.8	2200	1600	0 4	4.08	6.00	\$ 4,055,516.00	\$ 18,434,482.87	\$ 3,041,388.12	\$4,308,907.60	\$ 1,244,743.66	\$ 111,907.19	\$ 352,543.05	\$ 31,549,488.72	\$ 390,744.66	5 68,367.76	\$ 100,276.38	\$ 559,308.80
Operating Expenses	11,690,498	29 63.0 2	2.18	0.8	2200	1600	0 9	9.27	12.00	\$ 10,563,609.89	\$ 31,332,766.58	\$ 9,175,636.06	\$ 10,801,983.22	\$ 1,244,743.66	5 111,907.19	\$ 1,514,877 28	5 64,745,503.83	\$ 534,093.95	\$ 114,861 12	\$ 729,009.27	\$ 1,377,964.84
Total Costs	33,670,682	3 25.6 1	0.30	0.8	2200	1600	0 2	0.94	4.00	\$ 1,071,057.01	\$ 9,832,217.83	\$1,332,304.00	\$ 1,785,543.40	\$ 1,244,743.66	\$ 111,907.19	\$ 176,271.53	\$ 16,354,645.41	\$216,908.04	\$61,316.90	\$ \$0,130.19	\$ 328,363.13
Weighted total tonnes of CO2 transp (unweighted escalated escal & discounted)	17 844 246	15 15.5 1	1.91	0.8	2200	1600	0 7	7.26	8.00	\$ 1,746,953.31	\$6,094,594.14	\$1,362,131.99	\$ 1,960,193.68	\$1,244,743.66	\$ 111,907.19	\$ 672,163.60	\$ 14,012,687.64	\$ 131,797.12	\$ 01,152.50	\$ 310,377.49	\$ 531,327.19
Costs per toppe (using weighted total toppes)	1.89	34 18.7 1	2.09	0,8	2200	1600	0 7	7,39	8.00	\$ 2,083,985.28	\$ 8,205,786.09	\$ 1,649,661.28	\$ 2,324,435.80	\$ 1,244,743.66	\$ 111,907 19	\$727,777.75	\$ 16,348,297.05	5 158,291.89	\$ 83,377.14	\$ 348,460.40	\$ 590,129.44
Costs per tonne (dang weighted total tonnes)	000 400	5 32.6 2	2.39	0.5	2200	1600	0 8	1.44	12.00	5 5,507,134.43	5 16,413,427.95	5 4,778,802.72	55,668,171.37	51,244,743.66	5 111,907 19	51,640,935.76	5 35, 365, 123 10	5 276,724.32	5 119,903 46	5797,197 19	51,193,024.97
Capital Costs per mile of pipeline	826,420	7 48.0 2	0.55	0.5	2200	1600	0 4	67	6.00	5 4,210,782.75	5 12,350,324,74	5 621 453 12	5 941 656 79	51,244,743.00	5 111 907 19	5 331 990 97	57.895.454.50	574 509 50	5 67 545 67	5 110,309.02	5 276 425 52
Operating Expenses per mile of pipeline	439,544	22 87.1 2	1.25	0.8	2200	1600	0 6	6.76	8.00	54 068 803 27	\$ 15 927 538 17	\$8,725,120,43	54 469 497 28	51 744 743 66	\$111.907.19	5 940 198 43	5 29 597 858 44	5 814 822 51	\$91,873,97	5418 152 49	5 824 848 97
Operating Expenses per mile of pipeline per year of operation	14,651	6 49.8 2	0.28	0.8	2200	1600	0 4	1.01	6.00	\$4,371,759.87	\$ 19,867,844.48	\$ 3,278,668.93	\$ 4,639,079.23	\$ 1,244,743.66	5 111,907 19	\$ \$37,712.61	\$ 33,851,715.94	\$ 421,752.71	\$ 67,774.54	\$ 92,254 26	\$ 581,781 51
Total Costs per mile of nipeline	1 265 964	24 29.5 1	0.32	0.8	2200	1600	0 4	0.15	6.00	\$ 2,618,064.50	\$ 11,919,295.71	\$ 1,962,854.45	\$ 2,808,149.95	\$ 1,244,743.66	\$ 111,907 19	\$ 182,759.81	\$ 20,847,775.26	\$ 249,801.00	\$ 61,576.43	\$ 53,647.85	\$ 865,025.28
Total coso per nine or pipeline	1,205,504	4 14.7 1	0.30	0.8	2200	1600	0 8	1.54	4.00	5 1, 101, 974.09	\$ 5,789,882 77	\$ 784,933.98	\$ 1,085,937.16	\$ 1,244,743.66	5 111,907.19	\$ 176,271.53	5 10,295,650.39	\$ 124,222.37	5 61,316.90	\$ \$0,138.19	\$ 235,677.45
		1 17.9 1	0.12	0.8	2200	1600	0 2	2.59	4.00	51,333,075.48	57,003,614.11	5 949,284.57	51,295,997.44	51,244,743.66	5 111,907.19	5 120,657.45	5 12,059,279.90	5 152,051.70	5 59 092 33	5 20,055 28	5 231, 199, 32
Revenues	Real 2011\$	2 48.9 2	0.17	0.8	2200	16/0	0 3	1.29	4.00	51,757,286.44	\$ 18 4 18 940 08	5 2 492 734 72	53 225 102 35	\$1,264,743.66	\$111 907 19	5 269 121 93	5 29 347 901 93	5 414 749 40	5 65 030 91	5 65 152 01	5 534 432 32
	20115	21 36.4 2	0.30	0.8	2200	1600	0 2	1.90	4.00	\$ 2,635,473.06	\$ 13,843,782.08	\$ 1,875,500.58	\$ 2,479,815.49	\$ 1,244,743.66	5 111,907.19	\$ 352,543.05	5 22, 543, 715.11	5 808,887.04	5 68,367.76	\$ 100,276.38	\$ 477,531 18
Pevenue	37 472 917	25 35.6 2	0.33	0.0	2200	1600	0 4	4.03	6.00	\$3,152,001.77	\$ 14,339,705.98	\$ 2,363,532.73	\$ 3,365,605.69	\$ 1,244,743.66	\$ 111,907.19	\$ 371,001.07	\$ 24,946,738.08	\$ 302,161.97	\$ 69,109.28	\$ 110,304.02	\$ 401,575.26
Persona and the second sheet of the second	2,10	17 466.9 15	10.97	0.8	2200	1600	0 18	8.36	20.00	\$ 193,676,889.08	\$ 386,832,926.85	\$ 156,135,446.89	\$ 128, 159, 474.44	\$ 1,244,743.66	5 111,907 19 5	5 52,025,274.89	\$ 916,186,163.01	\$ 8,957,521.01	\$2,135,273.03	\$ 27,463,429.67	\$ 33,556,223.71
Revenue per conne (using weighted total connes)	2.10	20 75.4 3	7.25	0.0	2200	1900	0 14	4.32	16.00	\$ 20,003,305.74	2 42,020,446.54	2 17,210,415.57	2 10,026,718,56	21,244,743.66	\$ 111,907,19	20,203,202.00	5 113,126,940.15 5 297 A18 325 31	\$ 9,20,024.70	2 332,000.55	2 3,031,007.53	5 4,002,032.76
Revenue per mile of pipeline	1,408,922	25 91.0 3	0.71	0.6	2200	1600	0 6	5.12	8.00	\$9,878,215.66	5 10.520 523 46	57,836,566,74	\$ 10,747,930,26	51,244,743.66	5 111 907 19	5909.770.90	5 69,257,657,65	\$ 771 012 15	5 90.656.87	5 356 452 45	51,218,151,70
		9 26.6 1	0.59	0.8	2200	1600	0 5	5.15	6.00	5 2,369,809.12	\$ 10,794,088.89	\$1,776,586.06	\$2,548,961.24	\$ 1,244,743.66	\$ 111,907.19	\$ 267, 207.84	5 19, 113, 204.00	\$ 225,459.30	\$ 64,950.35	\$ 99,273.61	\$ 389,683.26
		1686							240	\$374,518,734	5979,119,070	\$102,810,291	\$296,828,785	538.587,053	53,469,123	591,534,814	\$2,086,867,869	\$14,295,382	55,343,640	546,348,479	565,987,501

CCUS in Kansas, Spt 21, 2017, Wichita, KS

Pipeline assumptions and cost model

FE/NETL CO2 Transport Cost Model Grant & Morgan, 2014

- NETL model provides itemized costs for capital and O&M
- Compared to \$100k/inch-mile: Estimates <u>+</u>10% for individual segments and <u>+</u>3% for systems

Assumptions/Inputs

- 90% of plant rating for CO2 production (EIA 2016)
- 110% distance in miles
- 2000-1400 psi drops
- Booster stations
- Delivered to field at 1400 psi

CapX and OpX by expense category

Economic Analysis of Ethanol CO2 Capture and Transportation at Varying Scales

- Evaluated multiple scenarios Four discussed today
- Range from simple, point-to-point (one source) to complex multi-source (up to 32 sources)
- Considered two Equity-Debt financing scenarios

Mean CO2 Price Required						
Required ROR	10%	6.7%				
\$/tonne	\$42	\$35				
\$/mcf	\$2.20	\$1.85				
\$/gal ethanol	\$0.14	\$0.12				
(Scenarios 1A, 2, 3)						

Average for scenarios 1A, 2, 3 at two ROR

CO2 price for required ROR (weighted average cost of capital)

Average cost allocation across three scenarios

For the 10% ROR Case

Ethanol plant\$18 /tonne, \$0.85 /mcf, \$0.061 /gal(capture and compress)

Pipeline (transport) \$23 /tonne, \$1.23 /mcf, \$0.078 /gal

More details on cost allocation

Perspective:

CO2 for EOR in W TX sells for \$1/mcf (2% of WTI price -\$50/BO)

Three years ago WTI was \$100/BO (\$2/mcf CO2)

Proposed 45Q tax credit ramps to \$1.85/mcf (\$35/tonne)

Cost Breakdown for 6.7% ROR case							
		\$/tonne	\$/mcf	\$/gal			
Pipelines	СарХ	\$15.15	\$0.80	\$0.051			
	ОрХ	\$3.79	\$0.20	\$0.013			
Ethanol Plants	СарХ	\$7.55	\$0.40	\$0.025			
	ОрХ	\$8.58	\$0.45	\$0.029			
		(\$35)	\$1.85	\$0.117			

Cost Breakdown for 10% ROR case

Ĵ		\$42	\$2 20	\$0.139
0	χα	\$8.58	\$0.45	\$0.029
Ethanol Plants C	арХ	\$9.77	\$0.51	\$0.033
0	рΧ	\$3.79	\$0.20	\$0.013
Pipelines C	арХ	\$19.60	\$1.03	\$0.065
		\$/tonne	\$/mcf	\$/gal

Average for three of the four scenarios at two ROR

Simple summary for the four scenarios

CO2 price for required ROR of 10% and 6.7% (weighted average cost of capital)

	Ethanol	Pipeline	CO2	Required P	rice \$/tonne	Required I	Price \$/mcf
Scenario	Plants	Miles	(Mt/yr)	10%	6.70%	10%	6.70%
1A	2(1)	201	1.12	\$37	\$31	\$1.95	\$1.64
1B	1	16	0.15	\$33	\$28	\$1.75	\$1.47
2	15	737	4.26	\$42	\$35	\$2.19	\$1.84
3	34	1546	9.85	\$47	\$39	\$2.46	\$2.06

1A Point-to-point, two ADM plants (413 MGY) to Sleepy Hollow field, Nebraska

- **1B** Generic Kansas point-to-point, 55 MGY plant to oil field within 16 miles
- 2 Fifteen plants (1575 MGY) to seven Kansas oil fields
- 3 Thirty-four plants (3643 MGY) through Kansas all the way to Permian Basin

Scenario 1A Large point-to-point

Scenario 1B Small point-to-point

Kansas Examples:

Modeled: 148,000 tonnes/yr transported 16 miles

- ✓ Kansas Ethanol, Lyons (55MGY) to Geneseo Edwards Field
- ✓ USEP, Russell (55MGY) to Hall-Gurney
- ✓ Prairie Horizon, Phillipsburg (40MGY) to Huffstutter

Could be attractive at \$75/BO	
45Q credits could make	Pipe
it attractive at today's prices	Etha
LCFS credits could	
make storage without	
EOR possible for	
ethanol plants	
CUS in Kansas Sot 21 2017 Wichita KS	

Cost Breakdown (\$/tonne)							
Requ	ired ROR	10%	6.7%				
Pipelines	СарХ	\$9.12	\$7.05				
	ОрХ	\$1.48	\$1.48				
Ethanol Plants	СарХ	\$14.09	\$10.89				
	ОрХ	\$8.58	\$8.58				
TOTAL	\$/tonne	\$33	\$28				
	\$/mcf	\$1.75	\$1.47				
	\$/gallon	\$0.11	\$0.09				

Scenario 2: Fifteen plants to Kansas oil fields

CCUS in Kansas, Spt 21, 2017, Wichita, KS

Scenario 2: Economics

Estimated Project Costs

Note: Rule of thumb **\$100k/inch-mile** yields **\$613** million CapX for pipeline

Cost breakdown (\$/unit CO2) for two Cost of Capital cases

Cost of Capital = 10%

Cost of Capital = 6.7%

	Pipeline	Ethanol	Combined	ŭ	Pipeline	Ethanol	Combined
CapX (\$/tonne)	\$18.60	\$10.55	\$29.15	CapX (\$/tonne)	\$14.37	\$8.15	\$22.52
OpX (\$/tonne)	\$3.80	\$8.58	\$12.39	OpX (\$/tonne)	\$3.80	\$8.58	\$12.39
Total (\$/tonne)	\$22	<mark>\$19</mark>	\$42	Total (\$/tonne)	<mark>\$18</mark>	\$ 17	\$35
			\$/tonne				\$/tonne
CapX (\$/mcf)	\$0.98	\$0.56	\$1.53	CapX (\$/mcf)	\$0.76	\$0.43	\$1.19
OpX (\$/mcf)	\$0.20	\$0.45	\$0.65	OpX (\$/mcf)	\$0.20	\$0.45	\$0.65
Total (\$/mcf)	\$1.18	\$1.01	\$2.19	Total (\$/mcf)	\$0.96	\$0.88	\$1.84
			\$/mcf				\$/mcf

Scenario 3 Large-scale, 10 Mt/yr

Westar and CHS would reduce overall transport cost

CCUS in Kansas, Spt 21, 2017, Wichita, KS

Parting Comments

- 45Q passes better move quickly
- If not, smaller scale projects possible
- Keep an eye on larger industrial source opportunities

Discussion

- Economic modeling?
- Potential for lowering costs?
- Kansas have the resource to support 4Mt?

Later today in open discussion

- Business model(s) to pull it all together
- How would credits be captured? And shared?
- Ins and outs of 45Q and LCFS credits?

Mean CO2 Price Required							
Required ROR	10%	6.7%					
\$/tonne	\$42	\$35					
\$/mcf	\$2.20	\$1.85					
\$/gal ethanol	\$0.14	\$0.12					

(Scenarios 1A, 2, 3)

Parting Comments

- 45Q passes better move quickly
- If not, smaller scale projects possible
- Keep an eye on larger industrial source opportunities

Discussion

- Economic modeling?
- Potential for lowering costs?
- Kansas have the resource to support 4Mt?

Later today in open discussion

- Business model(s) to pull it all together
- How would credits be captured? And shared?
- Ins and outs of 45Q and LCFS credits?

Mean CO2 Price Required							
Required ROR	10%	6.7%					
\$/tonne	\$42	\$35					
\$/mcf	\$2.20	\$1.85					
\$/gal ethanol	\$0.14	\$0.12					

(Scenarios 1A, 2, 3)