Economics for CO₂ Capture, Compression and Transportation in the Mid-Continent

Martin K. Dubois Improved Hydrocarbon Recovery, LLC mdubois@ihr-llc.com

> Dane McFarlane Great Plains Institute dmcfarlane@gpisd.net

In collaboration with Kansas Geological Survey

Why we are here today

45 Q is a game changer, making a variety of CCUS projects technically and economically feasible.

4.3 million tonne/yr could be captured in NE and KS ethanol plants and transported to Kansas oil fields for \$14 per tonne (0.75/mcf).

 Kansas oil recovery could increase by 28% (10 million BO/yr) through EOR by injecting 4.3 Mt/yr (221 mmcf/d).

Small ethanol plants could capture and directly inject CO₂ into a saline aquifer

- 22% ROI after \$85 Million in 45Q credits are applied.
- Might also derive significant benefits with a substantially lowered carbon intensity (i.e.: CA LCFS)

Sources for Economic Modeling and Resources

Pipeline CapEx and OpEx are derived from FE/NETL CO₂ Transport Cost Model (Grant & Morgan, 2014), modified by Dubois and McFarlane (2017) – see poster)

Capture and compression CapEx and OpEx are based on cost data from three DOE-funded projects (Details in White Paper: Capturing and Utilizing CO2 from Ethanol)

See your reference sheet for

- Acronyms
- Conversions
- Rules of thumb

See me at the posters for

- Pipeline cost model details
- Economic model inputs and assumptions

Capture and Storage at Variable Scales Project types and scales are nearly limitless in MidCon

Range from

- Simple: point-to-point (150,000 tonnes/yr)
- Somewhat complex: multiple sources to single market for EOR
- Very complex: multiple sources to multiple fields for EOR

Scenarios	presented	involve	the	highligh	ted boxes

		Ethanol	CO2
		Volume	Volume
Source Type	Description	(Mg/yr)	(Mt/yr)
Ethanol plants	Single Small	55-110	0.15-0.3
	Single Large	300	0.8
	Multiple - 15 plants	1575	4.3
	Multiple - 34 plants	3643	9.9
Coal Power	Single		1-4
Storage (Market	:)		
EOR	Single field - small (KS)		0.15-0.3
	Mutliple small fields (KS)		2-4
	Large market (W. TX)		4-10
Saline aquifer	Small local (KS)		0.15-0.3
	Single structure (KS)		1.5-3
	Multi-structure storage		6
	complex (KS)		

CO₂ volume is 90% of calculated nameplate

Four cases discussed today

- 1. Small-scale Point-to-Point for EOR (0.15 Mt/yr 2.9 BCF/yr)
- 2. Small-scale Capture and Inject for Saline Storage (0.15 Mt/yr – 2.9 BCF/yr)
- 3. Aggregate 15 ethanol plants and transport to multiple Kansas fields (4.3 Mt/yr 82 BCF/yr)
- 4. Aggregate 34 ethanol plants and transport to Permian Basin (9.9 Mt/yr 188 BCF/yr)

But what about Coal-Power CO₂

Petra Nova, Houston

- Operational for 18 months
- 1.4 Mt/yr captured & compressed
- Transported 82 mile 12" pipeline to West Ranch oil field
- \$1B capital costs (no details)

Kansas Coal-Power CO₂ possibilities

- Westar, Sunflower, KCBPU (power) and CHS (refinery) are participants the KGS – ICKan project
- Preliminary engineering study
 - Capture 2.5 Mt/yr from Westar's JEC
 - Cost for Capture/Compression \$46-\$78/tonne over 20-yr project.
- Getting closer needs to stay in the mix

CCUS in Kansas, July 26, 2018, KS

Case 1: Small-scale Point-to-Point for EOR, Oil Operator Owns CCT System

Current Kansas example: Conestoga's (Garden City KS) to Stewart Oil Field since 2012: 55 mgy plant, 15 miles to field

Future EOR example? Russell Ethanol – to Hall-Gurney field via 10-mile line

Generic economic model assumptions

- Capture and compress 150 kt CO₂/yr
- 20-mile, 4" pipeline
- Owner equity and secured note (net 5% interest)
- 14-yr project, 2 yrs construction, 12 yrs operations
- Injection begins in 2022
- 45Q credits (\$25-\$35, avg. \$33)
- No inflation is factored
- Pay Ethanol plant \$10/tonne CO₂

Modified from Dubois etal. (2002)

Case 1: Economic Summary

Cost per tonne CO ₂	2	\$/tonne
Capture/Compression	CapEx	\$0.66
	OpEx (annual)	\$8.58
Pipeline	CapEx	\$0.51
directly to CapEx in	OpEx (annual)	\$1.71
model to calculate TOTAL	\$/tonne	\$11.45
	\$/mcf	\$0.60
Cost		\$ Million
Capture/Compression	CapEx	\$17.25
	OpEx (annual)	\$1.28
Pipeline (20 mi, 4")	CapEx	\$13.21
	OpEx (annual)	\$0.25
TOTAL	CapEx	\$30.46
	OpEx (annual)	\$1.53

45Q tax credits make this case economically viable

Cost without 45Q \$34/tonne (\$1.80/mcf) Market CO₂ value with WTI = \$60 \$22.90/t (\$1.20/mcf)

Case 1: Risk and Benefit

Oil Operator

Risks

- 1. Capital exposure
 - \$30 M for CCT
 - \$10s of M for field upgrade
- 2. Oil field flood failure
- 3. CO₂ source (ethanol plant failure)
- 4. MVA and long-term liability

Benefit

1. Low-cost CO₂ because of \$59 Million 45Q tax credits

Ethanol Plant

Risks

- 1. Almost none
- 2. Loss of lower carbon intensity

Benefit

- 1. Revenue: \$1.5 M/yr (\$0.027/ gal) – for this case
- 2. Greatly reduced carbon intensity

Case 2: Small-scale Point-to-Point for Saline Storage *Ethanol Plant Owns CC System*

Saline Aquifer Storage

Planned ND example: Red Trail Energy, Richardson ND inject CO_2 direct into 6500-ft well 50 mgy plant, inject 160 kt CO_2 /yr

Economic model assumptions

- Capture and compress 150 kt CO₂/yr
- Inject onsite, or very close by, into a Class VI well
- Financed with owner equity
- 14-yr project, 2 yrs construction, 12 yrs operations
- Injection begins 2022
- 45Q credits (\$39-\$50/t, avg. \$47.47/t)
- No inflation is factored

CCUS in Kansas, July 26, 2018, KS

See poster on this project

Case 2: Economic Summary

Cost		\$ Million
Capture/Compression	CapEx	\$17.25
	OpEx <mark>(</mark> annual)	\$1.28
Class VI well	CapEx	\$2.5
	OpEx <mark>(</mark> annual)	\$0.2
TOTAL	CapEx OpEx (annual)	\$19.75 \$1.48

Risks

- 1. \$20 Million capital exposure
- 2. Class VI well permitting
- 3. Class VI injectivity (rate)
- 4. CO₂ source (ethanol plant)
- 5. Unable to capture low-carbon potential

Benefits

- 1. 22% ROI
- 2. \$5.6M Annual Net Cash Flow
- 3. \$85 Million in 45Q tax credits
- 4. Greatly reduced carbon intensity

Case 3: Fifteen plants to Kansas oil fields

Case 3 Economics

Estimated Project Costs

Note: Rule of thumb **\$100k/inch-mile** yields **\$613** million CapX for pipeline

Summary:

- Total CapEx \$1,006 M
- 45Q tax credits \$1,774 M
- Cost of Capital = 10%
- 2-yr construction and 20 yrs operations (ops in 2024)
- 12 yrs of 45Q credits -Avg. \$34.48/t

Costs per Unit of CO₂

	Pipeline	Capture & Compress	Combined
CapEx (\$/t)	\$1.71	\$0.69	\$1.90
OpEx (\$/t)	\$3.80	\$8.58	\$12.39
Total (\$/t)	\$5.02	\$9.27	\$14.29
Tax credits app in model to ca	lied directly to alculate price/to	CapEx onne \$/mcf	\$0.75

Without 45Q \$42 / tonne (\$2.19 / mcf)

Case 4: Large-scale, 10 Mt/yr

Case 4 Economics

Estimated Project Costs

Note: Rule of thumb **\$100k/inch-mile** yields **\$1821** million CapX for pipeline

Summary:

- Total CapEx \$2,667 M
- 45Q tax credits \$4,064 M
- Cost of Capital = 10%
- 2-yr construction and 20 yrs operations (ops in 2024)
- 12 yrs of 45Q credits, Avg. \$34.48/t

Costs per Unit of CO₂

	Pipeline	Capture & Compress	Combined
CapEx (\$/t)	\$4.28	\$1.86	\$6.14
OpEx (\$/t)	\$4.77	\$8.58	\$13.35
Total (\$/t)	\$9.05	\$10.44	\$19.49
Tax credits appl in model to ca	ied directly to 0 lculate price/to	CapEx nne \$/mcf	\$1.03

Without 45Q \$47 / tonne (\$2.46 / mcf)

Parting Comments

45Q extension and expansion is now the law

Preliminary economics favorable for myriad of scenarios

- Saline aquifer storage (small and large-scale)
- EOR storage (small and large-scale)

Lots of issues yet to be resolved

Later today in breakout session – get involved

- Define critical issues by sector and cross-cutting sector
- Discuss remedies and how we can collectively tackle the issues
- What's next?

BLANK

45 Q Tax Credits Applied

45Q specifics*

Enacted 2/9/2018 as part of a Federal budget bill

- Begin construction before February 9, 2025
- Credits claimed 12 yrs from day capture begins
- Can be claimed by capture facility, transferred to the storage facility, but not directly by transporter
- 2017 tax credits are \$12.83/tonne for EOR and \$22.66/tonne for saline storage.
- Credit escalates linearly through 2026 to \$35 for EOR and \$50 for saline storage and is flat beyond.
- Adjusted for inflation after 2026
- Injected into a qualified EOR project in a secure geologic storage or injected and sequestered in a secure geologic storage

* Sources: NEORI (Kurt Walzer), CLATF, State CO2 EOR Workgroup (Brad Crabtree), and S. 1535 document

Credit Values (\$/tonne)

Credits (no inflation)			
	EOR	Saline	
2017	\$12.83	\$22.66	
2018	\$15.29	\$25.70	
2019	\$17.76	\$28.74	
2020	\$20.22	\$31.77	
2021	\$22.68	\$34.81	
2022	\$25.15	\$37.85	
2023	\$27.61	\$40.89	
2024	\$30.07	\$43.92	
2025	\$32.54	\$46.96	
2026 -	\$35.00	\$50.00	
2035			

Inflation adjustment after 2026 not applied here