CO₂ Capture and Utilization, a Genuine Opportunity for Kansas Operators

Martin K. Dubois Improved Hydrocarbon Recovery, LLC *mdubois* @*ihr-llc.com (email for copy)*

> *In collaboration with* Kansas Geological Survey

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Why we are here today

45Q tax credits are a game changer, making a variety of CCUS projects (CO_2 EOR) technically and economically feasible.

Kansas operators are well-positioned

- Kansas candidate oil fields delineated
- Within pathway of possible large-scale CO₂ pipeline system

CO₂ captured in NE and KS ethanol plants could be transported to Kansas oil fields for \$14 per tonne (\$0.75/mcf).

• Kansas oil production could <u>increase by 28% (10 million BO/yr)</u> through EOR by injecting 4.3 Mt/yr (221 mmcf/d).

Hurdles yet to cross

- 45Q tax credit implementation rules resolution
- Aggregation of sufficient oil field assets (CO₂ market) to justify

Kansas Oil Production

So, how much is 10 million barrels per year?

✓ 28% of Kansas current production ✓ 27,000 BOPD Equals top 8 Kansas producers combined ✓ \$600,000,000 gross sales @ \$60/barrel \$12 Billion over 20 years

Top 8 Producers in Kansas

Rank in KS	Million BO/yr	% of Kansas
1	3.5	9.7
2	1.6	4.4
3	1.2	3.5
4	1.1	3
5	0.9	2.5
6	0.7	1.8
7	0.5	1.5
8	0.5	1.4
Total	9.9	27.8

And, what tax credits could be captured?

Hypothetical Scenarios

- Construction in 2020; Injection in 2022
- Tax credits average \$33/tonne CO₂ stored (for EOR) over 12 year period

	Kansas ethanol plant	Potential Kansas Field	Large-scale pipeline to Kansas
CO ₂ Volume (Mt/yr)	0.15	0.5	4.3
Annual Tax Credits (\$Million)	\$5M	\$17M	\$142M
12-years of Credits (\$Million)	\$59M	\$198M	\$1,703M

Outline

1. CO₂ Basics

- The magical fluid
- CO₂ EOR for 40+ years
- Expansion of industrial CO2 for EOR
- 2. Kansas Readiness
 - Industry-Kansas Geological Survey collaborations
 - Integrated CCS for Kansas (current)
 - Kansas CO2 EOR oil resources
- 3. 45Q tax incentives expansion and extension
 - 45Q tax credits discussion
 - Economics for capture, transportation, injection

4. Wrap-up and Q&A

CO₂ conversions, scales and "green" oil

Units/volumes		
 1 tonne (metric ton) 	1.1 tons	
 1 tonne CO₂ 	19 mcf	
 1 million tonnes 	19 bcf	

CO ₂ production at varying scales			
 Small Ethanol plant (55mgy) 	8.3 mmcfd	0.17 Mt/yr	
 Large Ethanol plant (313mgy) 	50 mmcfd	0.94 Mt/yr	
 Jeffrey Energy Center 	650 mmcfd	12.5 Mt/yr	
 CO₂ delivered for EOR 	3500 mmcfd	66.3 Mt/yr	

How "green" is anthropogenic CO₂ EOR?

- Combustion of 1 barrel of oil yields 8 mcf CO₂
- For every barrel produced ~8 mcf CO₂ is permanently left in the reservoir
- Stores as much CO₂ as is released upon combustion

CO₂ – the *magical* fluid

CO2 Phase Diagram

- Miscible floods must operate at greater than supercritical (1073 psi) and MMP (>1200 psi)
- Kansas reservoirs ambient properties range: 400 psi and 85F at 1000 ft and 1600 psi and 125 F at 6000 ft.

Modified after Condren www.cbu.edu/~mcondren/CO2_phase_diagram.jpg

KIOGA - CCUS Opportunities Kansas, 8-13-2018

CO₂ Volume with Depth (P&T)

Relative volume for CO2 under "normal" pressure and temperature conditions. Kansas is underpressure

Relevance to storage capacity

SW KS Morrow and Chester

- 6000 ft, 125F, 2100 psi
- CO2 0.5 bbl/mcf (9.5 bbl/tonne)

CKU L-KC and Arbuckle

- 3200 ft, 110F, 1200psi
- CO2 -1.2 bbl/mcf (22.8 bbl/tonne)

Conversions tool:

http://www.kgs.ku.edu/Magellan/Midcarb/co2_prop.html

KIOGA - COUS/Opp 2000 ities Kainsas, 8-13-2018

CO₂ Processing Styles

Horizontal (piston) flood

- Application: Follow waterfloods
- KS targets: L-KC, Morrow, Chester
- Well documented

Gravity-stable flood

- Application: bottom-water drive reservoirs
- KS targets: Arbuckle, Simpson, Viola
- Fewer analogues

US CO₂ Pipeline Infrastructure

Permian Basin and OK-KS pipelines

(Added by Dubois)

Bonanza Ethanol Plant

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Midwest Ethanol CO₂ to the Permian Plausible?

> McELMO DOME

Arizona

Basin Plan

Questions on CO₂ Basics?

Move on to Section 2:

Kansas Readiness

- Industry-Kansas Geological Survey collaborations
- Integrated CCS for Kansas (current)
- Kansas CO2 EOR oil resources

CO₂ EOR and CCUS Headlines

Kansas Ethanol Plants (2008)

DOE announced Phase II in DOE CarbonSAFE award KGS/industry partners land \$1.5M for Phase I in DOE CarbonSAFE

KSOGA - CCUS Opportunities Kansas, 8-13-2018

KGS' Current DOE-Funded Project(s)

U.S. DOE's 4-Phase CarbonSAFE Program

Phase	Program Topic	Years	Start Date	Budget
I	Integrated CCS Pre-Feasibility	1.5	3-2017	\$1.5M
	Integrated CCS for Kansas (ICKan) nearing completion			\$1.2M DOE
II	Storage Complex Feasibility	2	10-2018	\$13.3M
	Proposed: Integrated Midcontinent Stacked Storage Hub – Battelle, KGS and EERC jointly			\$9.6M DOE
Ш	Site Characterization	2	~2020	TBD
IV	Permitting and Construction	3.5	~2022	TBD

Project Partners and Participants

Industry P Supporter	Partners and s	Re	search Team	
CO2 Sources	Westar Energy	Kansas Geological Survey		
	Kansas City Board of Public	Impr	oved Hydrocarbon Recovery	
	Utilities	The Linde Group		
	Sunflower Electric Power Corporation	Great Plains Institute		
	CHS, Inc.	Dep	Depew Gillen Rathburn & McInteer	
		Re	search team	
Oil& Gas Operators	Berexco, LLC	1.	Investigated CO2 capture at CO2 Sources	
	Casillas Petroleum Corp.	2.	Evaluated geologic	
	Knighton Oil Co. Inc.		structures for capacity to	
	Blake Production Co. Inc.		store 50Mt CO2	
	Stroke of Luck Energy	3.	Legal, regulatory and public policy issues	

Storage Site Evaluations: North Hugoton Storage Complex

Analyze storage capacity on four structures

- Build 3D geologic model
- Run reservoir simulation to determine capacity
- 3 of 4 structures capable of storing 50 Mt CO2

Patterson Structure Simulation Example

- Inject 5,800 metric tonnes/day
- 60.6 Mt in 30 yrs \checkmark
- Four wells, three zones \checkmark

CO₂ Plumes simulated in Patterson Structure

Rupp

Four structures in the North Hugoton

KIOGA - CCUS Opportunities Kansas, 8-13-2018

CO₂ Sources & Transportation Assessment

Preliminary Conclusions

- Davis Ranch and John Creek lack 50 Mt capacity. SW Kansas exceed 50Mt capacity
- Cost for Capture/Compression at JEC is \$46 -\$78/tonne
- Transportation (pipeline) to SW Kansas cost is ~\$14/tonne
- Too high even with \$50/tonne 45Q credits

Jeffrey Energy Center, St. Marys, KS

- 3 x 800 MWe plants
 -12.5 million tonnes/yr CO₂
- Partial capture (~350 Mwe) yield 50 Mt over 20 years (2.5 Mt/yr)

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Phase II: Midcontinent Stacked Carbon Storage Hub

Phase II proposal

- Capture CO2 from • Ethanol plants
- Transport to SW ۲ Nebraska and SW Kansas
- Inject for storage \bullet (saline aquifer)
- Sell for EOR to offset costs
- Monetize 45Q credits \bullet

Participants / Supporters (Kansas affiliated in red)

Legend

 \bigcirc

0

0

Agency	NGO/Association	Ethanol Producer	Electric Utility	Oil Producer	Other
KS Gov. Colyer	Clean Air Task Force	ADM	NPPD	Berexco	ION Engineering
NE Ethanol Board	Great Plains Institute	Cargill	Westar Energy	Merit Energy	MV Purchasing
NE Dept. of Agriculture	KIOGA	Trenton Agri Products	Sunflower Electric Power	Great Plains Energy	The Linde Group
NE Dept. of Environmental Quality	NE Petroleum Producers Association	Valero Renewables	Kansas City Board of Public Utilities	Casillas Petroleum	
NE Corn Board	Renew Kansas	Pacific Eth.		Central Operating	
NE Energy Office		Kansas Ethanol			20

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Switch gears to Kansas CO2 EOR oil resources

Oil-rich state, but no appreciable CO₂ available

6.7 Billion barrels total Now at 36 mmbo/yr +10 mmbo/yr possible from CO2 EOR?

KIOGA - CCUS Opportunities Kansas, 8-13-2018

The Big Picture

From the Midwest Governor's Association and ARI (2009)

- Kansas holds > 750 million barrels of technical CO2-EOR potential.
- Kansas has the largest oil resources in the MGA region.

Basin	EOR potential (Mil bbl)	Net CO ₂ Demand (MMT)	Direct Jobs Created
Illinois/Indiana	500	160 – 250	1,550 - 3,100
Ohio	500	190 – 300	1,550 – 3,100
Michigan	250	80 - 130	800 - 1 800
Kansas	750	240 – 370	2,300 – 4,600
TOTALS	2,000	670 – 1,050	6,200 – 12,400

Byrnes et al., 1999 (Kansas Geological Survey) 250 to 1,000 million barrels

What's required for 250 mmbo? 4.3 M tonne / yr CO₂ (220 mmcfd) for 25 yrs

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Kansas First CO₂ EOR Project

- Bonanza ethanol plant (Garden City) to PetroSantander's Stewart Field
- 100-130 k tonnes/yr (5-7 mmcfd) CO2
- Increased production from 250 to 750 bopd
- Has not performed as expected multiple reasons

KGS Digital Petroleum Atlas

Stewart Field Production

Conestoga CCUS report, 2016

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Hall-Gurney Field Investigations

Murfin's Hall Gurney (Russell) Pilot (2005)

- Trucked CO2 from USEP Russell ethanol plant
- Injected 140 mmcf (7400 tonnes CO2)
- Produced an estimated 27.9 mbo incremental oil
- SUCESSFUL demonstration

Oil Production in Proposed C12 Unit

C12 Energy (2015)

- Projected 10.7 MBO recovery from proposed Unit
- KCC denied pooling application

Berexco's (and KGS) Wellington Pilot (2016)

DOE-FE-006821

Mississippian Oil Reservoir & Arbuckle Saline Aquifer Showing Newly Drilled Wells and Wells with Modern Logs

Rush, KGS

- Injected 374 mmcf CO2 (19,700 tonnes) over 165 days through June 2016
- 83% CO2 still in reservoir (6/1/2018)
- 16 mbo through June 1, 2018
- Projected Incremental oil 32.4 mbo
- Projected Gross utilization: 11.5 mcf/BO

Four fields in KGS/DOE study "CO₂ Ready" (2012-2015) Could take **2 Mt/yr** + **13.2 mmbo** from EOR

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Pleasant Prairie So. Chester IVF Primary + Secondary 4.7 mmbo

Fig. 6.14 Lithofacies model

Eubank North Unit Chester IVF

Primary + Secondary 7.4 mmbo

Here's the upside potential: Arbuckle

Geneseo-Edwards study

Kansas Ethanol, LLC (Lyons, KS) and CAP CO2, LLC, with support from Daystar and Scheck, 2010

- 55 MGY plant 15 miles to Geneseo-Edwards oilfield
- Did not go forward
 - 1. Not funded in DOE Phase II
 - 2. Drop in oil prices
 - 3. Geologic risk

		Cumulative Oil (mmbo)			CO2 stored		
4		Gross	Arbuckle	CO2 EOR	mmcf	Million Tonnes	Ethanol plant years
Co.	DOE Project	30.2	26.3	6.1	9,613	0.50	3.5
<i>.</i>	Balance Geneseo-Edwards	59.2	47.4	11.0	17,311	0.90	6.3
	Stoltenberg	55.1	44.1	10.2	16,112	0.84	5.9
	Bloomer	55.8	44.6	10.4	16,316	0.85	6.0
	Kraft-Prusa	137.8	110.2	25.6	40,294	2.09	14.7
	Chase-Silica	280.6	224.5	52.1	82,050	4.26	30.0
		618.7	497.1	115.3	181,695	9.4	66.4

"CO₂ Ready" EOR candidates

	Inject.	CO2	Primary &	CO2	
	Rate	Stored	Secondary	EOR	
	(Mt/yr)	(Mt)	(mmbo)	(mmbo	Basis for Estimate
Shuck	0.4	1.5	7.9	3.6	DE-FE000256
Cutter	0.5	1.3	5.4	2.8	DE-FE000256
N Eubank	0.6	1.5	7.4	4.6	DE-FE000256
Pleasant Prairie	0.3	0.5	4.7	2.2	DE-FE000256
Hall-Gurney	1	11.3	62.5	26.8	DE-AC26-00BC15124 PILOT C12 Energy KCC Documents
Тгарр	0.5	4.3	31.3	10.3	KGS reports
Wellington	0.6	2.2	16.2	5.3	DE-FE0002056 and PILOT
	3.9	22.8	135.4	55.7	

* P&S production is for portion of field that could be flooded

"CO2 Ready" fields could take 3.9 million tonnes /year (200 mmcfd) And recover 56 mmbo

Kansas Field Candidate Guidelines

- 1. Relatively large fields
 - >20 million barrels recovered
 - Or multiple smaller fields in close proximity adding to > 20 mmbo

2. High recovery rates on per-acre basis are most ideal

	mbo/Acre	Million BO/Section
SW KS Study (Chester/Morrow)	4-5	3
Hall-Gurney (L-KC)	8	5
Arbuckle (Geneseo-Edwards)	15	9.5

- 3. Large fields that were **good waterfloods**
 - Hall-Gurney (63 Mbo from L-KC waterfloods)
 - Others possible (to name a few) Huffstutter, Fairport, Trapp, Wellington

Move on to Section 3:

45Q tax incentives expansion and extension

- 45Q tax credits discussion
- Economics for capture, transportation, injection

45 Q Tax Credits Applied

45Q specifics*

Enacted 2/9/2018 as part of a Federal budget bill

- Construction before February 9, 2025
- Credits claimed 12 yrs from day capture begins
- Claimed by capture facility, transferrable to storage site (field), but not directly to transporter
- 2017 tax: \$12.83/tonne for EOR and \$22.66/tonne for saline storage.
- Escalates linearly through 2026 to \$35 for EOR and \$50 for saline storage, flat thereafter.
- Adjusted for inflation.
- Injected into a qualified EOR project in a secure geologic storage.
 - * Sources: NEORI (Kurt Walzer), CLATF, State CO2 EOR Workgroup (Brad Crabtree), and S. 1535 document

Credit Values (\$/tonne)

Credits (no inflation)					
	EOR	Saline			
2017	\$12.83	\$22.66			
2018	\$15.29	\$25.70			
2019	\$17.76	\$28.74			
2020	\$20.22	\$31.77			
2021	\$22.68	\$34.81			
2022	\$25.15	\$37.85			
2023	\$27.61	\$40.89			
2024	\$30.07	\$43.92			
2025	\$32.54	\$46.96			
2026 -	\$35.00	\$50.00			
2035					

Inflation adjustment after 2026 not applied here

Strings attached and/or complexities

Rumblings regarding rules to qualify for credits

- Definition for "Secure geologic storage"
- Monitoring Verification and Accounting requirements – for proof of injection and storage

Complexity of business plan/contracts

- Credit transfer agreements from capture facility to field operator
- Long term responsibility and liability

Capture and Storage at Variable Scales Project types and scales are nearly limitless in MidCon

Range from

- Simple: point-to-point (150,000 tonnes/yr)
- Somewhat complex: multiple sources to single market for EOR
- Very complex: multiple sources to multiple fields for EOR

Scenarios	presented	involve	the	highlighted	boxes
-----------	-----------	---------	-----	-------------	-------

		Ethanol	CO2
		Volume	Volume
Source Type	Description	(Mg/yr)	(Mt/yr)
Ethanol plants	Single Small	55-110	0.15-0.3
	Single Large	300	0.8
	Multiple - 15 plants	1575	4.3
	Multiple - 34 plants	3643	9.9
Coal Power	Single		1-4
Storage (Market	:)		
EOR	Single field - small (KS)		0.15-0.3
	Mutliple small fields (KS)		2-4
	Large market (W. TX)		4-10
Saline aquifer	Small local (KS)		0.15-0.3
	Single structure (KS)		1.5-3
	Multi-structure storage		6

CO₂ volume is 90% of calculated nameplate

Sources for Economic Modeling and Resources

Pipeline CapEx and OpEx are derived from FE/NETL CO₂ Transport Cost Model (Grant & Morgan, 2014), modified by Dubois and McFarlane (2017)

Capture and compression CapEx and OpEx are based on cost data from three DOE-funded projects (Details in White Paper: <u>Capturing and Utilizing CO2 from Ethanol</u>)

References:

Dubois, M.K., D. McFarlane, and T, Bidgoli, 2017, CO2 Pipeline Cost Analysis Utilizing and Modified FE/NETL Cost Model Tool, poster presented at the Carbon Storage and Oil and Natural Gas Technologies Review Meeting, Pittsburgh PA, August 3, 2017, Pittsburgh PA, August 3, 2017.

Grant, T., D. Morgan, and K. Gerdes, 2013, Carbon Dioxide Transport and Storage Costs in NETL Studies: Quality Guidelines for Energy Systems Studies: DOE/NETL-2013/1614, 22 p.

Grant, T. and D. Morgan, 2014, FE/NETL CO2 Transport Cost Model. National Energy Technology Laboratory. DOE/NETL-2014/1667. https://www.netl.doe.gov/research/energy-analysis/analytical-tools-and-data/co2-transport.

Three cases discussed today

- 1. Small-scale Point-to-Point for EOR (0.15 Mt/yr 2.9 BCF/yr)
- 2. Aggregate 15 ethanol plants and transport to multiple Kansas fields (4.3 Mt/yr 82 BCF/yr)
- 3. Aggregate 34 ethanol plants and transport to Permian Basin (9.9 Mt/yr 188 BCF/yr)

Case 1: Small-scale Point-to-Point for EOR, Oil Operator Owns CCT System

Current Kansas example: Conestoga's (Garden City KS) to Stewart Oil Field since 2012: 55 mgy plant, 15 miles to field

Future EOR example? Russell Ethanol – to Hall-Gurney field via 10-mile line

Generic economic model assumptions

- Capture and compress 150 kt CO₂/yr
- 20-mile, 4" pipeline
- Owner equity and secured note (net 5% interest)
- 14-yr project, 2 yrs construction, 12 yrs operations
- Injection begins in 2022
- 45Q credits (\$25-\$35, avg. \$33)
- No inflation is factored
- Pay Ethanol plant \$10/tonne CO₂

Modified from Dubois etal. (2002)

Case 1: Economic Summary

Cost per tonne CO ₂ (credits applied) \$/tonne			\$/tonne
Capture/Compression		CapEx	\$0.66
		OpEx (annual)	\$8.58
Pipeline		CapEx	\$0.51
directly to CapEx in	1	OpEx (annual)	\$1.71
model to calculate	TOTAL	\$/tonne	\$11.45
prico, conno		\$/mcf	\$0.60

45Q tax credits make this case economically viable

Market CO_2 value with WTI = \$60 \$22.90/t (\$1.20/mcf)

Costs		\$ Million
Capture/Compression	CapEx	\$17.25
	OpEx <mark>(</mark> annual)	\$1.28
Pipeline (20 mi, 4")	CapEx	\$13.21
	OpEx <mark>(</mark> annual)	\$0.25
TOTAL	CapEx	\$30.46
	OpEx (annual)	\$1.53

Cost without 45Q \$34/tonne (\$1.80/mcf)

Case 1: Risk and Benefit

Oil Operator

Risks

- 1. Capital exposure
 - \$30 M for CCT
 - \$5+M for field upgrade
- 2. Oil field flood failure
- 3. CO₂ source (ethanol plant failure)
- 4. MVA and long-term liability

Benefit

 Low-cost CO₂ because of \$59 Million 45Q tax credits

Ethanol Plant

Risks

1. Almost none

Benefit

- 1. Revenue: \$1.5 M/yr (\$0.027/ gal) – for this case
- 2. Greatly reduced carbon intensity

Case 2: Fifteen plants to Kansas oil fields

KIOGA - CCUS Opportunities Kansas, 8-13-2018

Case 2 Economics

\$60 \$22.90/t (\$1.20/mcf)

Estimated Project Costs

Note: Rule of thumb **\$100k/inch-mile** yields **\$613** million CapX for pipeline

Summary:

- Total CapEx \$1,006 M
- 45Q tax credits \$1,774 M
- Cost of Capital = 10%
- 2-yr construction and 20 yrs operations (operations begin 2024)
- 12 yrs of 45Q credits -Avg. \$34.48/t

Costs per Tonne of CO₂ (credits applied)

	Pipeline	Capture & Compress	Combined
CapEx (\$/t)	\$1.71	\$0.69	\$1.90
OpEx (\$/t)	\$3.80	\$8.58	\$12.39
Total (\$/t)	\$5.02	\$9.27	\$14.29
Tax credits app in model to ca	lied directly to alculate price/te	CapEx onne \$/mcf	\$0.75
Without 45Q			
Market CO ₂ valu	ue with WTI =	Witho \$47 /	ut 45Q tonne

(**\$2.46 / mc**t)

Case 3: Large-scale, 10 Mt/yr

Case 3 Economics

Estimated Project Costs

Note: Rule of thumb **\$100k/inch***mile* yields **\$1821** million CapX for pipeline

Summary:

- Total CapEx \$2.7 Billion
- 45Q credits \$4.1 Billion
- Cost of Capital = 10%
- 2-yr construction and 20 yrs operations (ops in 2024)
- 12 yrs of 45Q tax credits, Avg. \$34.48/t

Costs per Tonne of CO₂ (credits applied)

on		Pipeline	Capture & Compress	Combined
	CapEx (\$/t)	\$4.28	\$1.86	\$6.14
rs	OpEx (\$/t)	\$4.77	\$8.58	\$13.35
	Total (\$/t)	\$9.05	\$10.44	\$19.49
	Tax credits appl in model to ca	ied directly to 0 lculate price/to	CapEx nne \$/mcf	\$1.03
	Without 45Q			
	Market CO_2 value with WTI =		\$47 /	' tonne

\$60 **\$22.90/t** (\$1.20/mcf)

(\$2.46 / mcf)

Summary

	Challenge	Remedy	
Kansas Resource Base	Adequate but disparate and many operators.	Collaboration between operators. Consortium? Led by whom? (KGS, KIOGA, other)	
	Needs further analysis.		
45Q tax credits	Generous, but will Kansas operators be able to partake?	Need clarification and possible involvement in final rules.	
Complex business model	CO ₂ sources - Adequate but disparate and many operators.	Need "Big Players" to get involved.	
	Anchor and secondary markets (KS) need to be defined.		

Help shape the outcome.

 Make appropriate and timely investments to participate in developing the opportunity at hand.

Questions?

Acknowledgements:

Thanks to all of the operators that have participated in the KGS CO2-related projects over the years, in particular:

Berexco	Knighton Oil
Murfin	Blake Production
Merit Energy	Vess Oil
Casillas	John O. Farmer
Cimarex	And many others

Thanks also to the literally dozens of KGS staff and consultants to projects, portions of which are contained in this presentation, with whom I have had the privilege to work, in particular: KGS - W. Lynn Watney, Tandis Bidgoli, Eugene Holubnyak; Consultants & Firms - Dane McFarlane (GPI), Krish Krishnamurthy (Linde), Dennis Hedke, Eugene Williams, John Youle.... And many others