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Correlation of Textural
Properties with
Permeability

To try and improve the prediction of permeability over the
standard use of porosity as the independent variable
several textural parameters were measured. Indices were
created as metrics for measurement using binocular
microscope. Metrics using this method were selected
since it was assumed that cuttings samples would be the
only source of information other than well logs for most
wells. It was also believed that this method would provide
adequately quantitative data to assess variable influence.

Variables Measured:

Porosity - by helium porosimetry under ambient
conditions

Connectivity Index - An index ranging from 1 to 4
representing the degree of connection between oomolds
as observed at 10X-20X:

1 - no apparent connection between oomolds, nearly all
molds observed have no connection to other molds

2 - Connections are observed but are limited (<10% of
molds)

3 - Connections are observed between many molds

4 - A majority of molds display connection to other molds
or some percentage of the molds appear to exhibit
extensive dissolution and connection

Packing Index - An index from 1 to 4 representing the
packing density of oomolds:

1 - Isolated oomolds

2 - Pack-wackestone, Limited contact between oomolds
but many portions are wackestone

3 - Extensive contact between oomolds, packstone

4 - Dense packing of oomolds

Size - An estimate of the average oomold diameter in phi
units

Archie Matrix Porosity Index - base on Archie’s (1952)
second parameter for describing matrix porosity. Archie’s
parameter was expressed A-D for matrix porosity. In this
study it was expressed as 1 through 4:

1 - No visible porosity in matrix uner 10X examination,
pores < 0.01mm

2 - Visible porosity, 0.01mm<pores<0.1mm

3 - Visible porosity, 0.1mm<pores<cutting size

4 - Visible porosity, evident by crystal growth on pores,
vuggy

Fracture Index - Index ranging from 0-3 representing
influence of fractures on permeability:

0 - No fractures evident

1 - hairline fractures or cracks observed

2 - Fracture present

3 - Samples is heavily fractured

Correlations

Figures to left indicate that several of the parameters are
correlated with permeability and that the nature of the
correlation is consistent with what would be anticipated.

Multivariate Linear Regression 50 e Residual Oil Saturation
Multivariate linear regression was performed to try and improve permeability prediction. | o ] AWsonCreek to Wate rﬂood
Problems arise in performing LRA using the variables measured because some are | ¢ 40 = ©Amazon Ditch East [
correlated with each other creating collinearity problems. This is particularly true for s 3 rembly i c . f residual oil saturation t terflood
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5.5X to 5.4X because variance accounted for by porosity is attributed to the actual
variable controlling the variance, forexample:

log k = 0.083 f - 0.40 Connectivity Index - 0.28 Size

+ 0.11 Archie Index + 0.25 Fracture Index - 2.82Std. Error = 5.4X
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Differences Between Wells

Correlation of permeability with porosity separated by
well shows that many wells exhibit unique trends that
display less variance in the correlation of porosity with
permeability than the overall trend for oomoldic
limestones. This points up the need forlocal data.
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! parameters. Examples to left illustrate that remaining
5 variance is most dependent on Connectivity.
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regression has difficulty handling the variable

Linear Regression Prediction influence. To see in nonparametric methods might
improve prediction an Excel add-in program KIPLING
b (Bohling and Doveton, 1999 - available from the KGS)
was used. KIPLING is an Excel program that is similar
to neural network and works by discretizing variable

space.
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Utilizing 60% of the samples as a training set, KIPLING
was able to exhibit a predictive accuracy of a factor of
4.4X on the training set and 5.4X in a test on the
Y4° ® remaining data. This is comparable to the MLRA

method accuracy. Further analysis is underway to
analyze the nature of the analysis and possible
directions of improvement.
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space). These recoveries are for the
similar samples exhibiting porosities from 9.
24.0 to 25.3%, and permeability from 19.8
to 27.5md. The moderately high recovery
0 is consistent with recoveries exhibited by
better Lansing-Kansas City oomoldic
limestones but many lower permeability
rocks exhibit poorer recovery efficiencies.
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“Irreducible” Water
Saturation

With finer pores in the matrix surrounding large oomolds
it is important to understand capillary pressure
relationships since high porosity may not be directly
associated with effective oil porosity. Correlations of
“Irreducible” water saturations (measured at pressures
equivalent to 60-120 feet above free water level)
indicate that Swiincreases with decreasing permeability
as exhibited by many rocks. Differences between fields
are largely attributable to the samples/wells analyzed
and may not reflect true field differences.
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Saturation increases with decreasing permeability
following the relation:

Swi=35.7 exp(-0.46 log k)

\

where Swiisin % and kin md.
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Relative Permeability

Imbibition relative permeability curves for oomoldic
limestone samples from the Amazon Ditch East Field,
Marmaton Formation, exhibit uniformity for three similar
samples exhibiting porosities from 24.0 to 25.3%, and
permeability from 19.8 to 27.5 md.
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Conclusions

Geology and Architecture

Lansing-Kansas City oolitic reservoirs exhibit geometries and architectures similar to modern oolites in the
Bahamas although Pennsylvanian oolite reservoirs usually contain multiple stacked, or en echelon shoals which
models indicate coalesced in response to sea level fluctuations.

Oolites form across the entire Kansas Pennsylvanian ramp. However, thicker, porous and permeable oolite
deposits are commonly associated with the flanks or crests of small and large paleostructural highs.T h e s e
structural highs may have influenced the intensity of early diagenesis and may have been responsible for
development of good reservoir properties. Grain size variation, location on oolite buildups and interbedded
carbonate mud (aquitards) influenced the nature and extent of diagenetic overprinting.

Oolite beds with porosity in excess of 8% porosity can reach several tens of feet in thickness, representing cross-
bedded stacked shoals.

Subaerial exposure and meteoric water percolation led to cementation around the aragonite ooids and often
dissolution of the ooids and variable development of matrix and vuggy porosity. Resulting oomoldic grainstones,
the principal reservoir lithofacies, underwent variable degrees of early or later fracturing and crushing, providing
connection between otherwise isolated oomolds.

Wireline logs signatures commonly exhibit low gamma ray, porosities ranging to greater than 30% and water
saturations in the low teens with bulk volume water (BVW) as low as 0.03 based on an Archie cementation
exponent of 2.

Petrophysics
Pay zones typically have BVW <0.05.

permeability (0.01-400 md) s principally controlled by :

Porosity

Oomold connectivity
Other variables that exert influence but are colinear with the above variables or are random include:

Oomold diameter

Oomold packing

Matrix properties

Matrix fracturing/crushing
Although permeability correlates with several of these variables, multivariate linear regression methods only
improve prediction from a factor of 6.9X to 5.4X by inclusion of information concerning connectivity index, as
measured on rock pieces. Few variable are utilized because of vaiable autocorrelation. The critical role that a
single variable may play in controlling permeability hinders linear associations.

Non-parametric Regression analysis, utilizing the variables above, provides a mathematical tool capable of
predicting permeability in all oolites studied within a factor of 5.3X, only slightly better than MLRA prediction.

Individual wells exhibit k-f trends with less variance than the overall trend, however, to date, the variables that
cause the samples from these wells to exhibit different trends has not been identified. Development of models for
specific fields, representing unique associations of conditions, allows the most accurate prediction

Irreducible water saturation (Siw) and residual oil saturation after waterflooding (Sor,w) are also strongly
controlled by connectivity and correlate highly with permeability

The oomoldic reservoirs rocks studied provide insight into the interactions of rock fabric-architecture-diagenesis
and better understanding of the universal influence of certain variables on oomoldic reservoir properties. Work is
still needed to improve predictive tools.




