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Geology and Architecture

Lansing-Kansas City oolitic reservoirs exhibit geometries and
architectures similar to modern oolites. Reservoirs usually contain
multiple stacked, or en echelon shoals that formed in response to sea
level fluctuations. It appears that two such lobes are stacked in the
Plattsburg Limestone at the planned CO2 miscible flood site
represented by the core. Oomoldic reservoirs formed across the
entire Kansas Pennsylvanian ramp, however, thicker, porous and
permeable oolite deposits are commonly associated with the flanks or
crests of paleostructural highs. These highs, such as that underlying
the Hall-Gurney Field, may have influenced the intensity of early
diagenesis and may have been responsible for development of good
reservoir properties. Grain size variation, location on oolite buildups
and interbedded carbonate mud (aquitards) influenced the nature
and extent of diagenetic overprinting.

Subaerial exposure and meteoric water percolation led to
cementation around the aragonite ooids and often dissolution of the
ooids and variable development of matrix and vuggy porosity.
Resulting oomoldic grainstones, the principal reservoir lithofacies,
underwent variable degrees of early or later fracturing and crushing,
providing connection between otherwise isolated oomolds.
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Oolitic packstones and grainstones are the most prolific reservoir lithofacies for the Pennsylvanian
Lansing-Kansas City. Oolite shoal facies owe their wide distribution geographically within Kansas and
stratigraphically within the Upper Pennsylvanian to bathymetry (very low-angle ramp) and episodic sea
level changes. The broad Kansas shallow shelf and oscillating sea level resulted in lateral migration of
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Petrophysics and Reservoir Properties

Porosities in these oomoldic limestones range up to 35% and
permeabilities range from 0.001-400 md. Permeability is principally
controlled by porosity, oomold connectivity, and connection created by
matrix crushing and fracturing. Permeability is also influenced by oomold
diameter, oomold packing, and matrix properties. Increasing bioclastic
constituents within and bounding oolite beds are often associated with
increasing mud matrix and decreasing porosity and permeability. Individual
wells exhibit porosity-permeability trends with less variance than the overall
trend exhibited by L-KC oomoldic limestones.

Within the L-KC 'C' zone in the Hall-Gurney field and the CO2
demonstration site, permeability decreases from the top of the bottom of the
LKC 'C'interval. Lower permeability with increasing depth in the reservoir
interval is attributed to increased dense bioclastic limestone content and
decreasing moldic porosity.

Correlations of “irreducible” water saturations (measured at pressures
equivalent to 60-120 feet above free water level) indicate that Swi increases
with decreasing permeability following the trend:
logSw50 (%) =0.22 log k(md)) - 0.43

Upper Pennsylvanian Lansing-Kansas City Gp |

Lansing-Kansas City oomoldic limestones exhibit a near log-linear trend
between wetting phase saturation and oil-brine height above free water
level with capillary pressures decreasing with increasing permeability at any
given saturation and can be modeled using the relation: Pc = 10%°" " ®
(pwater-poil).

Residual oil saturation to waterflood (Sorw) is a critical variable for both
waterflooding and carbon dioxide miscible flooding since this represents the
target resource. Most L-KC waterfloods in Kansas have only involved 1-5
pore volumes (PV) throughput before reaching their economic limit. At 5
pore volumes throughput Sorw averages near 30%. Though sampling is
limited, Sorw may increase then decrease with increasing permeability (k).

Correlation of Textural Properties with Permeability
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Previous investigation showed the relationship between permeability and rock textural parameters

including:

e Connectivity Index - An index ranging from 1 to 4 representing the degree of connection between
oomolds as observed at 10X-20X:

e Packing Index - Anindex from 1 to 4 representing the packing density of oomolds:

e Size-An estimate of the average oomold diameter in phi units

e Archie Matrix Porosity Index - base on Archie’s (1952) second parameter for describing matrix
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rim and miniscus calcite cements with little cement
growth into oomolds. Micritized ooid cortices and
oolite grains preserved. Isolated oomolds not filled
with blue epoxy (X) suggest these pores are not
connected. Thin section photomicrograph with
crossed polarizers. (Layer2)

Carter-Colliver 6= 32.0%
#CO2 1-1 2894a k =101.0md
Coarse grained oolitic grainstone with moldic
porosity. Early rim cement followed by pore filling
calcite cement that occluded intergranular pores.
Notable absence of cement within oomolds. No
crushing evident in this view but pore connections
are visible in few cases and are likely outside the
plane of section. Thin section photomicrograph
with plane polarized light. (Layer2)

- Carter-Colliver 0= 32.0%
¢ ¢ #CO2I1-1 2894b k=101.0md
Coarse grained oolitic grainstone from same
interval as above is very similar except extensive
crushing and collapse has created well connected
3 pore system. Fine cement shards appear to form
. geopedal fabric. ~Thin section photomicrograph
with plane polarized light. (Layer2)

Carter-Colliver 0 =22.9%

#CO2 I-1 2900b k=5.6 md
Medium-coarse grained oolitic grainstone with
moldic porosity. Single crinoid grain.
Neomorphosed early rim and pore filling calcite
. cement that occluded intergranular pores. Some
cement growth into oomolds. Oomolds do not
appear to be in contact, nor is communication
° through crushing evident. Thin section
:  photomicrograph with crossed polarizers. (Layer

)

: Carter-Colliver ¢ =20.7%

#CO2 1-1 2902.5 k=1.4 md

Medium grained oolitic grainstone with moldic
porosity. Heavily neomorphosed early rim and
' intergranular pore filling calcite cement.
1 Significant cement growth into oomolds reduced
moldic porosity. No crushing of oomolds evident.
. Lack of epoxy impregnation in nearly all oomolds
J (X)suggests these pores are not connected. Thin
section photomicrograph with Nichols crossed.
(Layer5)

porosity. Early rim cement followed by pore filling
calcite cement that occluded intergranular pores.
Notable absence of cement within oomolds. Minor

the higher porosity at the top of the ‘C’ zone but is also influenced by pore structure changes
associated with the unconformity surface.
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crushing of oomolds and slight offset is related to
microfracture. Thin section photomicrograph with
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