"Log Petrophysics of the Lower Permian Chase Group in the Hugoton Gas Field of southwestern Kansas"

John H. Doveton

Kansas Geological Survey

Spectral Gamma-ray log of a Chase Group section

Examples of spatial variation of uranium in Chase Group units

From Luczaj (1998)

Permeability versus porosity and uranium

Lithodensity neutron logs of a Chase Group section

Chase Group RHOmaa – Umaa crossplot

Compositional profile computed from gamma-ray, density, neutron porosity, and photoelectric factor logs

Herington Ls Paddock Sh 2700 Krider Ls **PERMIAN**) Odell Sh Winfield Ls (LOWER 2800 Gage Sh GROUP Towanda Ls Holmesville Sh CHASE 2900 Fort Riley Ls Florence Ls Blue Springs Sh Kinney Ls³⁰⁰⁰ Wymore Sh Wreford Ls Depth (feet)

Mobil Brown #1-2 11-35S-37W Stevens Co., Ks

Council Grove core porosity calibration data set

			whole			
facies		plugs	core	total	outliers	final
1	NM Silt & Sand	156	106	262	9	253
2	NM ShlySilt	167	31	198	2	196
3	Mar Shale & Silt	70	33	103	0	103
4	Mdst/Mdst-Wkst	67	22	89	0	89
5	Wkst/Wkst-Pkst	147	59	206	2	204
6	Sucrosic (Dol)	35	19	54	1	53
7	Pkst/Pkst-Grnst	116	64	180	11	169
8	Grnst/PA Baff	34	28	62	2	60
		792	362	1154	27	1127

Log/Core porosity comparison

Non-marine (facies 1 & 2) and marine (facies 3 and 4) siltstones

Gas effects: Invasion and depth of investigation of density and neutron tools

Example of gas effect in the Towanda Limestone

Towanda Limestone gas effect on neutron – density crossplot

Relationship between Xplot porosity, averaged neutrondensity porosity, and gas effect

Common porosity estimations with gas correction:

(1) Approximation of the Gaymard-Poupon equation

$$\Phi = \sqrt{\frac{(\Phi n + \Phi d)}{2}}$$

(2) Empirical

 $\Phi = 0.33 * \Phi \mathbf{n} + 0.67 * \Phi \mathbf{d}$

Chase Group/ Council Grove statistical analysis of neutron density porosities calibrated to core porosity (accommodating gas effect)

Limestones (n = 786): $\Phi = 0.399 * \Phi n + 0.610 * \Phi d$ Dolomites (n = 513): $\Phi = 4.63 + 0.259 * \Phi n + 0.523 * \Phi d$

Acknowledgements

We thank our industry partners for their support of the Hugoton Asset Management Project and their permission to share the results of the study.

BP America Production Company Cimarex Energy Co. ConocoPhillips Company E.O.G. Resources Inc. Medicine Bow Energy Corporation Osborn Heirs Company OXY USA, Inc. Pioneer Natural Resources USA, Inc.