Panoma (Council Grove) Geomodel

O
P et rO h s I Ca I M o d e I This paper is a snap-shot of an ongoing effort with the ultimate goal
of the creation of a robust three-dimensional geomodel suitable for

accurate reserve analysis and reservoir simulation. The work to
date demonstrates:
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T Shelo & el | Feeesem: wells for modeling porosity in cells Top Layer, A1-LM (Funston) Top Layer, A1-LM (Funston) P Y 1. Test the neural net lithofacies prediction models by comparing additional

B Mudstone B (G o [ 26 between the wells (Sequential core lithofacies (from undescribed available core) with those lithofacies

Gaussian). predicted.

. Test Petrel's stochastic lithofacies modeling procedure by comparing its
results to neural net predictions at wells that were not used in conditioning

QC facies modeling by comparing
. 1H the Petrel model.
values that are assigned for the Upscaled absolute permeablllty CUIVES Increase well coverage by “recovering” data from the set that was removed

| |
i ] - . . g .
cells at the well to what is being e rm ea b I I Ity M Od e I were calculated using porosity-permeability for a variety of data quality and standardization reasons including interval

modeled beyond the well bore. transorm equations developed by Byrnes. skips and log curves requiring normalization (especially the gamma ray
2nd Iteration and neutron porosity).

. Improve porosity model by correcting porosity log curves for shale.

. Explore other possible lumping and splitting schemes for the training set
using the digital lithologic data.

. Consider other predictor variables such as vertical transition probability
biasing and relative position within an interval.

. Expand efforts in lithofacies geometry biasing in the area of inter-well
extrapolation by incorporating predicted lithofacies probabilities and other
statistical methods.

. Further optimization of input parameters in all aspects of model
development.

. Develop a detailed, field-wide free water level map

. Calculate original gas in place and compare with production history.

. Move into reservoir modeling phase and compare with production history.

Tops Check
(in Petrel)

Initial quality check of tops showing
obvious data busts; rotated view

looking north. Tops were corrected for _ ; ot
wells with proper log suite for facies/ | * | —— .
petrophysical modeling. Other tops - '
were deleted.

Upscale Permeability

W 120092 10420000 [S55 TVDI
S5 TVD|CRIRE LIT s 7 [002  PHINDSS 0.0 [8 swums i 635[0 i fanBed 21

04 0.2 30[0.2 29[E-4 27

=00 =

Interval Isochores
of the Council Grove =

Core X-Plot | Upscaled Upscaled
Lith Log Phi | Log Phi Perm.

. A7 Int /
Structure Grid nterva

1000° X' 1000’ cells

A1 Interval

CGRV_GRP, JCGRY_GRP

e L CGRY_GRP
A1_SH
70 _ WM Sitt & Sand
[
1 WM Sikt & Sand

Selected References

Albus, J. S., 1981, Brains, Behavior, and Robotics, BYTE Publications, Inc., Peterborough, N.H., 352 pp.

Babcock, J.A., T.M. Olson, K.V.K. Prasad, S.D. Boughton, P.D. Wagner, M.K. Franklin, and K.A.
Thompson, 1997, Reservoir characterization of the giant Hugoton Gas Field, Kansas, American

u |
k€ Pro portional Iy” 3 D I I t h Ofa C I e s M o d e I - - T Association of Petroleum Geologists Bulletin, v. 81, p. 1785-1803.
Layered Model 3 D L |th Ofac 1es M Od e I ; (BZ?ahslis?f?éa(?io?];,}?gr?si'sHéleDoﬁc\)/S}ggl, SZSSV%y},(gpsir;%.fla: An Excel Add-in for Nonparametric Regression and
g Byrnes, A.P., M.K. Dubois, and M. Magnuson, 2001, Western tight gas carbonates: comparison of
. . . . F Council Grove Group, Panoma Field, southwest Kansas, and western low permeability gas sands (abs),
Distribution of approximately 500 Model facies using different biasing parameters based on geologic understanding .; 2001 American Association of Petroleum Geologists Annual Convention, V. 10, p. A31.
wells with proper |Og suite used for o _ _ _ _ of field. Examples include “non-biased” using a spherical range of 100,000' x il guda, IR. O.l\,lP. E\.( Hl?r’%,5a4nd D. G. Stork, 2001, Pattern Classification, Second Edition, John Wiley &
: : : . : : : : : ons, Inc., New York, .
facies and petrophysical modeling Defining the Structural Framework for Panoma Biasing Lithofacies Geometry 100,000", slightly biased (2:1 ratio to NE-SW), heavily biased to NE-SW, and bias A1 Interval PP
] o . . . . . Heyer, J.F., 1999, Reservoir characterization of the Council Grove Group, Texas County, Oklahoma, in
(1) Create a "skeleton grld" deflnlng the (3) Fill the neW|y created horizons with based on mapped reglonal facies distribution patterns' g.l!t.MerI{'/ilamt,. ed.,v\'}'.rahr.l{s.acliigns ofthel,imlerican Assoclijaticlm of I\:/’etroleltjm G;(ologistl; I\/)Ilidcontinent I
: : e . . ection Meeting, Wichita, KS.
Data Management: cell size for the model. For Panoma a grid ayers thus defining the cell thickness. The Porosity Model Porosity Model Permeability Model ¥
. ' ' " . " . . . Ol ki, T.D. and M.E. Patzk ky, 2003, F loth t . Th d of t d
Tops dataset | cell size of 1,000' x 1,000' was used to Panoma model used "proportional” layering Non-biased 2:1 Trend Biased Heavy Trend Biased Facies Distribution 2nd Iteration Ist lteration 1st Iteration dlimate one an icehouse eperic platiorm (Pennsylvanian-Permian, North American Midcontinent, Journal
24,879  Total wells in initial PETRA project, maximize the number of wells for the keeping the same number of layers through e ase NE-SW : of Sedimentary research, v. 73, no. 1, p. 15-30.
including regions outside of model o h v Pobulat I . . . (NE-SW) (NE-SW) . Biased |
12.097 Wells having at least Council Grove model to honor exact y. Popu at|ng a ce a given Interval regarc”ess of thickness | . Parham, K.D., and J.A. Campbell, Wolcampian shallow shelf carbonate, Hugoton Embayment, Kansas
’ g . . r . . ; | and Oklahoma, 1993, in: Atlas of Major Midcontinent gas reservoirs, Bureau of Economic Geology and
top pick by KGS geologist with more than one well results in an variations. For non-marine shale intervals Gas Research Institute.
11,367 Wells in initi_al structure model. "averaging" of those two (Or mOre) data Iayer thickness was defined by the average Pippin, L., 1970, Panhandle-Hugoton field, Texas, Oklahoma and Kansas, the first 50 years, in Halbouty,
10,836 After screening for tops busts. pOintS. thickness in the zones. and for limestones M.T., ed., Geology of giant petroleum fields: Association of Petroleum Geologists Memoir 14, p. 204-222.
(I:gat:tet;ﬁ%r?%r(\)mg reduced the well |ayer thickness was defined by the average Pippin, L., 1985, Prefiled testimony, rebuttal testimony, and supplementary testimony before the Kansas
d . . . . Corporation Commission on behalf of Northern Natural Gas Company, Docket C-164.
(2) Construct a top horizon using the zone thickness PLUS one standard
P . = 4 Puckette, G.R., D.R. Board , I, and Z. Al-Shaieb, 1995, Evid fi -level fluctuati d
?I?(I)%ﬂ Weslbgﬁge?]?téosuer:c” Grove penetration COUﬂClII Grove GrOUp tOp (A1_SH) _Then d@Vlatlon. stl_:gti(garaephic sgquencezai:l tmh:nCour?cr:]il Grove Qgﬁp (L(_)wer Pvér;?gr?) I?I_ruzz?or?\lliemblg;/rl:]aerlmot,ns?)rl]Jthern
5;36 After removing wells Withpbad curves create isochores for each of the su bjacent Mid continent, in Hyne, N.J., ed.: Tulsa Geological Society Special Publication no. 4, p. 269-290.
4t gaps or Sthor prob|ems ; Zzones and hang thOSG iSOChOreS from the (4) Create general interSGCtiOn Cross- Rascoe, B. and F.J. Adler, 1983, Permo-Carboniferous hydrocarbon accumulations, Midcontinent,
) . . . U.S.A.: American Association of Petroleum Geologists Bulletin, v. 67, p. 979-1001.
469 Final count after further screening top horizon. sections to QC structural framework.
Venables, W. N., and B. D. Ripley, 1999, Modern Applied Statistics with S-Plus, Third Edition, Springer-
Verlag New York, Inc., 501 pp.

Layer in A1-LM (Funston) Layer in A1-LM (Funston) Layer in A1-LM (Funston) Layer in A1-LM (Funston)




	Page 1

