Rock Petrophysical Properties and Modeling

Sources for Core Analysis Data

As with many smaller Mississippian fields, core was not available from within the field. To provide models for predicting permeability, oil-water relative permeability, capillary pressure properties, and connate water saturations, regional petrophysical trends for the Mississippian and trends obtained from analysis of eight cores from nearby fields were used.

Lithofacies, Permeability, Porosity

Lithofacies and early diagenesis are major controls on permeabilit (k) and porosity () despite complex diagenetic overprinting by s Pennsylvanian subaerial exposure and burial processes

I k and decrease significantly and continuously with decreasing grain/mold size from packstone to mudstone (a trend exhibition) many other carbonates) and from echinoderm-rich to spicule-rich

The permeability-porosity trend for all lithofacies are approxin bunded within two orders of magnitude by trendlines defined b

- log **k**in situ = 0.25 in situ 2.5
- log *k*in situ = 0.25 in situ 4.5
- generally unique range of k and which together define a with k decreasing with decreasing grain/mold size for any given porosity. Each individual lithofacies exhibits a unique sub-parallel trend to the general trend. Statistically the general trend is dominated by the large number of spicule-rich samples and is strongly influenced by mudstone and cemented echinoderm grainstone properties:

 $\log k_{in \, situ} \,(md) = 0.24$ in situ(%) - 3.78

Porosities for the Wellington West field average 16<u>+</u>4%. Porosities are interparticle, intraparticle and moldic. Properties of the moldic porosity rocks are largely controll by original depositional fabric with permeablity increasing from mudstones to grainstones

Wellington West Equations

and chert facies but could not distinguish lithofacies (mudstonegrainstone). Permeability-porosity (k-) trends for cores from eight wells in nearby fields were consistent with regional Miss of the Wellington West field. Permeability for the carbonates was predicted from porosity using:

Dolomite:
$$ki = 0.746 e^{0.189}$$

imestone:
$$ki = 0.00198 e^{0.569}$$

Local cherts exhibit a k- trend (light blue line) that is subparallel to the regional chert trend (blue line). Because of limited local sampling the regional trend was considered more robust and was utilized for modeling

Permeability and Pore Throats

Though permeability is shown correlated with porosity variables that control permeability in Mississippian rocks nclude pore throat size and distribution, grain size Porosity is only one of the variables controlling permeability and bivariate correlation therefore relies on the correlation between porosity and the other controlling variables. A crossplot of permeability and principal pore throat diameter (PPTD) illustrates the control PPTD exerts on permeability.

oil saturation to waterflood also changes with permeability and/or Swi following the general trend: Sorw=(1-(Swi+0.5)). Initial pseudo-Swi values were assigned to each layer using Pc-k relations discussed Figures show how kro and krw change with permeability. The lower figures on right

increase in pore body size with increasing k as shown by Nuclear Magnetic Resonance 1

Modeling Relative Permeability

Since relative permeability end point saturations change with permeability (e.g. "irreducible" water saturation changes with permeability), the relative permeability curves also change with absolute permeability. Relative permeability curves for any ity were modeled using Corev-type equations where Swi was obtaine from Pc-k relations and the average absolute permeability values assigned. Exponent m and n values were initially obtained from measured data and were modified during simulation to reproduce lease production data.

 $kro = (1-S_{wD})^{m}$

 $krw = {}_{2}S_{wr}$

$S_{wD} = (S_w - S_{wi})/(1 - S_{wi} - S_{orw})$

Water Saturation (fraction

Capillary Pressure

Fluid saturations in the Wellington West field were determined electrical wireline logs and capillary pressure relations

pressure measurements indicate that water tions at 45-50 ft (Sw45, Sw50) above free water increase with decreasing porosity and permeability (Figures). Because of the decreasing grain/mold size from packstone to mudstone. Sw45 in $Sw45(\%) = -20*\log kinsitu + 61$. Within the echinoderm-rich facies in Ness Field, S_{w50} is correlated with and **k**: Sw50(%) = -3.21 insitu + 87.61 (SE= \pm 19%) and Sw50(%) = -17.5 log₁₀ kinsitu + 42.1 for Echinoderm-rich facies (SE=+8.7).

For cores near Wellington West the following relations predicts Sw60: $Sw60(\%) = -28.8 \log_{10} kinsitu + 62.6.$

Generalized Capillary Pressure Curves

o provide capillary pressure curves for the reservoir simulation it was specific permeabilities that might be assigned to a gridcell. Equations onstruct generalized capillary pressure curves were constructed on the relationships evident from the entry pressures ar he saturations evident in the air-brine capillary pressure analys The relationships between increasing entry pressure. "irreducible vetting phase saturation, and the capillary curve curvature (reflect v were utilized to develop equations that would predict th pressure curve using permeability as the independer

Entry pressure, or the first pressure at which wetting phase desaturation begins and similar to R35, exhibits a strong correlation with permeability and can be predicted using:

Pcow = $4.374 \, ki^{-0.4625}$

Where **Pcow**_{entry} is the oil-water entry pressure and **ki** is the *in situ* permeability. Using the above term and a function to model capillary pressure curve shape synthetic capillary pressure curves could be created for any permeability.

Calculator for Wellington West

K(md)=	100				
Krwmax=	100	Kromax=	1	Pce=	0.520
Krw -m=	0.5	Swi=	0.05	Pcs=	-0.879
Kro - n=	3.1	Sorw=	0.450	PcSwiH(ft)=	60.0
water grad	0.438	W sp grav=	1.0111	input value	
oil grad	0.365	Oil sp grav=	0.8439	calc value	

				Height above	
SW	KRW	KROW	PCOW	free water (ft)	SwD
0.0500	0.0000	1.0000	7.236	99.94	0.0000
0.1000	31.4960	0.7233	3.934	54.34	0.0992
0.1500	44.6318	0.5023	2.755	38.05	0.1992
0.2000	54.6992	0.3322	2.139	29.55	0.2992
0.2500	63.1823	0.2061	1.758	24.29	0.3992
0.3000	70.6541	0.1172	1.498	20.69	0.4992
0.3500	77.4080	0.0588	1.308	18.07	0.5992
0.4000	83.6182	0.0241	1.163	16.07	0.6992
0.4500	89.3980	0.0069	1.049	14.49	0.7992
0.5000	94.8262	0.0008	0.956	13.21	0.8992
0.5500	99.9600	0.0000	0.879	12.14	0.9992
0.6000	100.0000	0.0000	0.814	11.25	1.0000
0.6500	100.0000	0.0000	0.759	10.49	1.0000
0.7000	100.0000	0.0000	0.711	9.82	1.0000
0.7500	100.0000	0.0000	0.669	9.25	1.0000
0.8000	100.0000	0.0000	0.633	8.74	1.0000
0.8500	100.0000	0.0000	0.600	8.28	1.0000
0.9000	100.0000	0.0000	0.570	7.88	1.0000
0.9500	100.0000	0.0000	0.544	7.51	1.0000
1.0000	100.0000	0.0000	0.520	7.18	1.0000
1.0000	100.0000	0.0000	0.520	7.18	1.0000

Vith this worksheet, if the simulator required an adjustment of ity, the corresponding capillary pressure and relative permeabili and immediate feed-back of the effect of a change on flow at a given saturation.

Archie Cementation Exponent

raditional wireline log calculation of saturations use the Archie equation and ementation (m) and saturation exponent (values of 2. Formation resistivity factors (Ro/Rw) measured at Rw=0.045 ohm-m (Figure) indicate hat the Archie cementation exponent (assuming an Archie intercept of 1.0) averages m=1.97+0.09 for all facies. Echinoderm-rich facies can exhibit cementation exponents between 2.0 and 2.1. Vuggy cherts can exhibit cementation exponents between 2.1 and 2.2.

Production data normally includes both transient and depletion declines

Production data

Field production recorded by lease Wharton Lease - 3 wells Becker Lease - 2 wells Waugh Lease - 6 wells

Barrel test (Oil & Water) data available from 1989 to date - 1 test per year

Field developed between 1977 to 1985 Majority of wells drilled in 1983

Initial oil production history missing in each well

How to reconstruct oil production history?

Advanced Decline Curve Analyses

Match available production (rate/time) data with a model.

- Transient decline caused by fluid expansion with continually increasing drainage area
- **Depletion decline after drainage radius reaches outer** boundaries

Decline curves analyse production data from depletion period

Used to estimate missing production data or to predict future production provided production practices remain unchanged.

This method estimates reserve volumes that are in pressure communication - ultimately recoverable by the wells.

Type curves, theoretical solutions to flow equations, are often used for decline analyses.

Fetkovich decline type curves were used here.

- Model assumptions Well producing under constant BHP
- Well is centered in a circular drainage area
- No-flow occurs at drainage boundaries

Missing oil production between 1983 to 1988 estimated for Becker #1 - completed oil history. Production history for Becker #4 completed between 1983 to 1988 by subtraction Becker #1 production from Becker Lease.

Reconstructed Becker #4 history also falls on a decline curve.

Available water production data consisted of IP (initial production) records from Scout cards and annual barrel test results from 1989. The IP records show that measureable amounts of water were recorded in only 4 wells - Waugh #5, #6, #7, and Wharton #3. Of these 4 wells, water rates greater than 2 bbls/day were recorded in only 2 wells. It appears that initial water production from remaining wells were not significant enough to merit measurement and record.

Based on this limited water production data, it is not unreasonable to assume that initial water saturation in the reservoir was at *"critical water saturation"*, S_{werit}, where the relative permeability to water, K_{rw} , is effectively zero (or close to zero as perhaps is the case in this field).

Reconstruct Oil Production History Advanced Decline Curve Analyses

Inferences from Decline Curve Analyses

Oil production histories were completed using initial production (IP) rates and barrel test data recorded since 1989.

Reconstructed oil production data from wells in a lease when added together closely approximated recorded lease production.

Available production data, for most of the productive life of each well, could be modeled by a decline curve. This means that bottom hole producing pressures (Pwfs) at the wells remained mostly unchanged. Recorded production data at some of the wells indicated that wells underwent intermittent stimulations A very short transient decline is visible when the recorded production data is plotted on Fetkovich's Type Curve. This is indicative of low effective permeabilities existing in the reservoir.

Water Production data

Summary of IP rates from Scout Cards

Well	KB	Perforation	Perforation	Perf from	Perf to	IP bopd	IP bwpd	Acidization
		from, ft	to, ft	Subsea, ft	Subsea, ft			
Wharton 1	1237	3644	3658	-2407	-2421	15		Yes
Wharton 2	1244	3646	3660	-2402	-2416	25	No Water	Yes
Wharton 3	1246	3654	3664	-2408	-2418	25	10	Yes
Becker 1	1246	3790	3800	-2544	-2554	50		Yes
Becker 4	1248	3652	3670	-2404	-2422	25	Water	Yes
Waugh 1	1258	3654	3670	-2396	-2412	25		Yes
Waugh 2	1252	3652	3656	-2400	-2404	25	Water	Yes
Waugh 3	1248	3644	3662	-2396	-2414	15	Water	Yes
Waugh 4	1259	3672	3686	-2413	-2427	15		Yes
Waugh 5	1245	3660	3670	-2415	-2425	30	2	Yes
Waugh 6	1257	3655	3656	-2398	-2399	25	25	Yes
Waugh 7	1256	3680	3685	-2424	-2429	25	1	Yes