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REGIONAL TRENDS IN THERMAL
MATURATION

Thermal maturation, as displayed by the vitrinite reflectance
and coal rank maps above, increases southward in the Kansas
part of the Western Interior Coal Basin. The most prolific gas
generation in coals occurs at medium-volatile bituminous rank.
Kansas coals are less thermally mature (generally high-volatile
bituminous ranks) and hence contain less gas.

A north-south projection of the Rock-Eval Tmax maturation
parameter for shales from well cuttings and cores in the Forest
City basin, Bourbon arch, and Cherokee basin (see diagram at
right) also indicates a southward increase in thermal
maturation. At a given depth, there is less maturation in the
Forest City basin than further south in the Cherokee basin.
This may be caused by higher heat flow in southeastern
Kansas, or northward movement of higher-temperature waters
out of the Arkoma basin onto the cratonic platform during the
late Paleozoic Ouachita orogeny.

These trends in maturation indicate that operators attempting
to produce coalbed gas in the marginally mature strata in the
Bourbon arch and Forest City basin should concentrate on the
deepest coals, which should have better gas content.
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POSSIBLE THERMOGENIC AND BIOGENIC ORIGINS OF KANSAS COALBED GAS
The desorption diagrams above are from two wells in adjacent counties in the Cherokee basin. The deepest coals in Montgomery County (to the west) register gas
contents from 250 to 300 scf/ton. The same coals in Labette County (to the east) are buried less deeply, and they have gas contents considerably less than the
Montgomery County coals. However, the Iron Post coal at 382 ft (116 m) depth in the Labette County well has an unexpectedly large gas content (>100 scf/ton),
exceeding that of the deeper coals. A microbial or mixed thermogenic-microbial origin for this gas is suggested. Pennsylvanian coal-bearing units crop out at the
surface in Cherokee County (the county immediately east of Labette County). Downdip movement of fresh water from the outcrop may augment biogenic
production of coalbed gas in shallow coals along the eastern flank of the Cherokee and Forest City basins. A possible consequence to this model is that separate
thermogenic and biogenic production fairways in the same coal may be present. The thermogenic fairway would be deeper in the basin where there is sufficent
burial and confining pressure. The biogenic fairway would be updip and closer (and likely parallel) to the outcrop where basinal brines would be diluted by meteoric
waters carried downdip from the outcrop.

Montgomery
County

Labette
County

Cherokee
County

(from Lange and others, 2003)

GAS ISOTOPIC DATA

A crossplot of methane δ13C and the δD can be used to infer gas origin. Thermogenic
methane carbon is typically isotopically heavy (i.e., less negative) whereas microbial
methane carbon typically is isotopically light (i.e., more negative). Microbially-derived
gas is also dry and largely void of heavier hydrocarbons (i.e., ethane, propane, etc.).

A data set on isotopes of conventional gases from eastern Kansas (from Jenden and
others (1988) can be compared to coalbed gas samples. The conventional gases
(squares in the above diagram) range from biogenic to thermogenic in origin. A map of
the data (see above, left) shows most biogenic and mixed biogenic-thermogenic gases
are on the shallow eastern flank of the Forest City and Cherokee basins, whereas
thermogenic gases are farther west in the deeper portions of the basins. There is no
strong stratigraphic differentiation of these gases in which younger, less thermally
mature formations display a stronger biogenic signature (see key for location map for
conventional samples). This suggests that some conventional and coalbed gases in
eastern Kansas could be what Scott (1999) termed "secondary biogenic gases" in which
methanogenic bacteria modify existing hydrocarbons.

Coalbed-gas methanes (circles in the above diagram) show no strong thermogenic
signature. Gases from the Bourbon arch and eastern flank of the Forest City basin tend
to be isotopically lighter than Cherokee basin gases, which is consistent with lesser
thermal maturation northward.

Bacterial modification of eastern Kansas coalbed and conventional gases is also
suggested by the crossplotting of ethane δ13C with % ethane. Methanogenic bacteria
more easily consume isotopically lighter carbon. In such circumstances, the residual
ethane will become isotopically heavier (i.e., less negative) as it is consumed. Similar
effects of microbial oxidation of heavier hydrocarbons in gas have been observed with
Devonian shales in the Michigan basin (Schoell and others, 2001; Walter and others,
2001; Martini and others, 2003) and with Fruitland coal in the San Juan basin (Schoell
and others, 2001).
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in
cr

ea
sin

g
m

at
ur

at
io

n

REGIONAL TRENDS IN GAS QUALITY

Conventional gases have higher BTUs in southeastern Kansas, indicating a
greater proportion of heavier hydrocarbons -- a trait that is consistent with
the inferred greater maturation in this region. Shallower Pennsylvanian
gases from the Missourian and Virgilian part of the section have greater
percentages of noncombustable gases, which significantly lowers their
heating value. Heating values for coalbed gases mimics the trend
established by the conventional gases. Inasmuch as helium is not easily
retained by adsorption, coalbed gases generally have low helium content,
but the presence of helium in some coalbed gases suggests leakage from
conventional reservoirs with well completion.

CONCLUSIONS

1. A marked increase in drilling for coalbed gas has occurred in
southeastern Kansas in the last three years, with a commensurate increase
in coalbed gas production.
2. Most of the activity for coalbed gas has been in southeastern Kansas in
the Cherokee basin, but isolated projects farther north in the Bourbon arch
and Forest City basin are in progress.
3. Most Kansas coals are thin (<2 ft [0.6 m] thick), but several can be
encountered in a given well. Water pumped from the coals is easily
disposed, usually into the Arbuckle Dolomite, which lies a few hundred feet
below the deepest coals.
4. The Forest City basin has several coal seams that are likely older than
the Riverton coal, which is generally the oldest coal in the Cherokee basin
and Bourbon arch.
5. Thickness trends in many coals follow a NNE-SSW depositional strike.
6. Thermal maturation increases southward into the Cherokee basin. This
increase in maturation is manifest in the greater heating values of
conventional gas and coalbed gas in this region.
7. A mixed biogenic and thermogenic origin of the coalbed gas in eastern
Kansas is indicated by gas chemistry and stable isotopes. Some of the
biogenic gas may be due to biogenic oxidation of existing hydrocarbons.
8. Possible biogenic and thermogenic production fairways may be present
in eastern Kansas.
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