Stratigraphy, Depositional Environments, and Coalbed Gas Potential of Middle Pennsylvanian (Desmoinesian Stage) Coals – Bourbon Arch Region, Eastern Kansas

By

Troy Anthony Johnson B.S., Kansas State University, 2001

Submitted to the Department of Geology and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science

2004

Chair

Committee Members

for the Department

Date Submitted_____

ABSTRACT Troy Anthony Johnson Department of Geology, August 2004 University of Kansas

The Cherokee and Marmaton groups (Desmoinesian Stage) of Kansas contain numerous thin coals within mixed siliciclastic and carbonate cyclothems. Coals rank from high volatile C- to A-bituminous and are less than ideal for coalbed methane production. However, coalbed gas across the Bourbon arch may be a viable energy resource given the shallowness of the coals, sufficient overburden and overlying seals of thick shale, and high probability of encountering multiple coal beds within a single well. Expansion into the Bourbon arch from a developing coalbed gas play in southeastern Kansas is hindered by the lack of data and clear resource evaluation. The objectives of this study—mapping coal extents and thicknesses; evaluating coal gas contents, trends, and quality; outlining geologic factors contributing to coalbed gas production; and estimating coalbed gas resource—will aid in northward expansion of coalbed gas development.

The possible geologic controls on coalbed gas content were studied through core description and interpretation, well-log correlation, digital subsurface mapping, and coal gas desorption and quality analysis. Results were used for depositional and stratigraphic interpretation of coals and surrounding strata. The variability of coal thickness, extent, and continuity can be understood within a sequence stratigraphic context. Maximum-flooding-surface (MFS) coals are thickest and best developed, while transgressive- and highstand-systems-tract coals are more localized. Peatforming environments of Bourbon arch coals include coastal plain and estuarine systems, and peats associated with marine regression and pre-Pennsylvanian topography.

Gas contents in the Bourbon arch range from 5 to 143 scf/ton (as received) and 17 to 181 scf/ton (moisture-, ash-free). Estimated gas resource is 2.1 tcf. Increasing gas content is directly related to increasing depth. No conclusive relationship exists between gas content and sequence stratigraphic position, or depositional environment. Average gas content does increase with increasing average coal thickness, which is influenced by proximity to the MFS, but MFS coals do not necessarily have the highest average gas contents. Higher gas contents are also associated with coastal plain and pre-Pennsylvanian topographic-controlled coals. However, depositional settings are biased towards relative position within the Desmoinesian and subsequently greater depths within the study area.

ACKNOWLEDGEMENTS

I am grateful to my family and friends, and the numerous people at the University of Kansas and Kansas Geological Survey who supported and assisted me during this chapter of my life.

First and foremost, I would like to extend my appreciation to my committee members: Drs. Tim Carr, Anthony Walton, and Rick Devlin for their patience, insight, and contributions to my thesis. Like many students before me, Dr. Carr has provided much wisdom, inspiration, and guidance in my thesis and coursework. When I decided to pursue a different project in the summer of 2002, Dr. Carr introduced me to ongoing coalbed gas research at the Kansas Geological Survey and ultimately provided me with the opportunity to gain valuable experience in the petroleum industry while earning a graduate degree. I am also indebted to Dr. Walton, who has taught me important aspects of siliciclastic sedimentology and petroleum geology and has influenced my career aspirations and overall interest in geology. In addition to Dr. Carr and Dr. Walton, I am fortunate to have been educated by several other professors at the University of Kansas who are similarly well-regarded in their fields: Drs. John Doveton, Bob Goldstein, Ross Black, Steve Hasiotis, Paul Enos, Diane Kamola, and Don Green. Equally important are those geology professors from Kansas State University, Drs. Mary Hubbard and Jack Oviatt, who directed me during my undergraduate years.

Many people at the Kansas Geological Survey provided technical assistance and support during completion of this thesis project. Thanks go out to Pat Acker for

iv

drafting depositional models; Joe Anderson and Galen Worthington for drilling the Franklin County core during many chilly November days; and Dana Adkins-Heljeson, Ken Stalder, Pam Griffin, and Janice Sorenson for assistance with open-file reports, publications, computers, and electronics. The KGS fortunately has many bright and talented geoscientists. Larry Brady, John Doveton, Marty Dubois, Alan Byrnes, Bill Guy, Lynn Watney, Dan Suchy, Rex Buchanan, and Dan Merriam all provided valuable geologic insight, advice, and critique. Of these noteworthy scientists, I am most thankful to Dave Newell. Dave has become a good friend during my time at KU and I will likely miss him the most. Finally, special thanks go out to everyone in the Petroleum Research section of the KGS who regularly bought lunch for the graduate students—we are all indebted to you.

I would like to extend my gratitude to Jim Stegeman of Colt Energy for his assistance, suggestions, and insight to my thesis project; and his close relationship to the Kansas Geological Survey by providing core and desorption data. I would also like to thank Osborne Energy, LLC; Legacy International; Meritage KCM; and many other independent coalbed methane companies that provided opportunities to collect geologic data. Acknowledgement also goes to GeoPlus Petra and Neurolog for access to hardware and software used in the project.

The past three years have also been rewarding in non-academic terms. I've enjoyed playing softball for the Kansas Geological Survey Boneheads and I'd like to thank the team and coaches for allowing me to enhance my athletic skills by somewhat trusting me to play slightly more difficult positions other than right field

V

and catcher. I've also enjoyed weekly poker nights with several fellow geology graduate students—thanks for letting me win so often. I am grateful to my fellow graduate students in the basement of Parker Hall—Jonathan Lange, Matt Brown, Liangshuang Qi, Ed Washburn, and Galo Salcedo—for their advice, support, heckling, camaraderie, and football breaks.

My deepest appreciation, gratitude, and love go out to all of my family, especially my parents. Without them, this research would have never been completed. Thanks for supporting me through college and for not disowning me when I informed you that I was going to be a temporary Jayhawk.

Finally, and most importantly, I'd like to thank my wife. A single paragraph within this massive text does little justice for all the love, support, inspiration, and care she has given me over the past two years of our marriage. She sacrificed much, including many lonely evenings and nights while I was stuck at work and several missed family events. She stood with me through all of the stress and frustration, and for that I admire her. Thank you.

TABLE OF CONTENTS

	PAGE
Chapter 1 Introduction	1
1.1 Introduction	2
1.2 Study Area	4
1.3 Geologic Background	5
1.3.1 Tectonic History	5
1.3.2 Desmoinesian Stratigraphy	9
1.3.3 Paleoclimate	11
1.4 Hydrocarbon Significance	12
1.5 Methods of Investigation	14
1.5.1 Lithologic Analysis	16
1.5.2 Log Analysis	17
1.5.3 Computer Applications	19
1.5.4 Gas Desorption and Analysis	21
1.5.5 Coal Quality Analysis	23
1.5.6 Units of Measurement	24
Chapter 2 Facies Analysis	25
2.1 Introduction	
2.2 Facies Analysis	28
2.2.1 Coal Facies	28
2.2.2 Underclay Facies	30
2.2.3 Black Shale Facies	35
2.2.4 Gray Shale Facies	38
2.2.5 Heterolithic Siltstone Facies	41
2.2.6 Heterolithic Sandstone Facies	44
2.2.7 Mudstone-Wackestone Facies	48
2.2.8 Packstone-Grainstone Facies	51
2.2.9 Chaetetid Facies	54
2.2.10 Conglomerate Facies	56
2.2.11 Cross-Bedded Sandstone Facies	60
2.2.12 Interbedded Sandstone-Siltstone Facies	62
2.2.13 Bioturbated Sandstone Facies	65
Chapter 3 Coal-bearing Intervals of the Bourbon Arch	68
3.1 Introduction	69
3.1.1 Coal Proximate Analysis	69
3.1.2 Subsurface Mapping	76
3.2 Stratigraphy of Coal-bearing Intervals	79
3.2.1 Riverton Interval	79
3.2.2 Warner Interval	85
3.2.3 Bluejacket Interval	87

	PAGE
3.2.4 Weir-Pittsburg Interval	96
3.2.5 Tebo Interval	101
3.2.6 Scammon Interval	104
3.2.7 Mineral Interval	108
3.2.8 Croweburg Interval	112
3.2.9 Bevier Interval	116
3.2.10 Mulky Interval	120
3.2.11 Summit Interval	125
3.2.12 Lexington Interval	129
3.2.13 Mulberry Interval	133
Chapter 4 Coalbed Gas in the Bourbon Arch	138
4.1 Introduction	139
4.2 Gas Content	145
4.2.1 Desorption Results	145
4.2.2 Coal and Coalbed Gas Resource Estimate	154
4.3 Coalbed Gas Geochemistry	158
4.4 Gas Content Relationships	161
Chapter 5 Sequence Stratigraphy	166
5.1 Introduction	167
5.2 Sequence Stratigraphy of Desmoinesian Strata	170
5.2.1 Sequence 1	172
5.2.2 Sequence 2	173
5.2.3 Sequence 3	175
5.2.4 Sequence 4	178
5.2.5 Sequence 5	180
5.2.6 Sequence 6	182
5.2.7 Sequence 7	184
5.2.8 Sequence 8	187
5.2.9 Sequence 9	190
5.3 Discussion	192
5.3.1 Depositional Succession	192
5.3.2 Stratigraphic Controls on Peat Formation	193
5.3.3 Sequence Stratigraphy and Coalbed Gas Content	196
Chapter 6 Modern Analogues and Depositional Models	201
6.1 Introduction	202
6.2 Depositional Models and Modern Analogues	208
6.2.1 Pre-Pennsylvanian Topography	208
6.2.2 Coastal Plain	211
6.2.3 Estuarine	214
6.2.4 Marine Regression	215

	PAGE
6.3 Discussion	225
6.3.1 Depositional Controls on Peat Formation	225
6.3.2 Depositional Environments and Coalbed Gas Content	225
Chapter 7 Conclusions	231
References Cited	240
Appendices	
Appendix A: Franklin County core description and photographs Appendix B: Stratigraphic interval isopach maps	248 296

LIST OF FIGURES

FIGURE PAGE DESCRIPTION

Chapter 1

	Chapter 1	
1.01	Stratigraphy of the Desmoinesian Stage in Kansas	3
1.02	Map of Bourbon arch study area, Desmoinesian outcrop, and tectonic regions of Kansas	6
1.03	Map of paleolatitude and tectonic features in the Midcontinent	7
1.04	Basic cyclothem model	10
1.05	Maps of piplelines and coalbed methane wells drilled in eastern Kansas	13
1.06	Study area map with correlated well log data points and core locations	15
1.07	Well log response to lithology of the Rose Hill #1-6 well	18
1.08	Desorption canisters and apparatus	22

Chapter 2

2.01	Photograph of the Coal Facies	29
2.02	Photograph of the Underclay Facies	31
2.03	Photograph of the Black Shale Facies	36
2.04	Photograph of the Gray Shale Facies	39
2.05	Photograph of the Heterolithic Siltstone Facies	42
2.06	Photograph of the Heterolithic Sandstone Facies	45
2.07	Photograph of the Heterolithic Sandstone Facies	46
2.08	Photograph of the Mudstone-Wackestone Facies	49
2.09	Photograph of the Packstone-Grainstone Facies	52
2.10	Photograph of the Chaetetid Facies	55
2.11	Photograph of the Conglomerate Facies	57
2.12	Photograph of the Cross-Bedded Sandstone Facies	61
2.13	Photograph of the Interbedded Sandstone-Siltstone Facies	63
2.14	Photograph of the Bioturbated Sandstone Facies	66

Chapter 3

3.01	Type log of the Bourbon arch study area	70
3.02	Composite section of Desmoinesian strata in the Bourbon arch	71
3.03	Legend of symbols used in interval diagrams	72
3.04	Graph of ash contents of Bourbon arch and Cherokee basin coals	74
3.05	Graph of sulfur contents of Bourbon arch and Cherokee basin coals	75
3.06	Graph of coal thickness for Bourbon arch and Cherokee basin coals	77
3.07	Mississippian structure contour map of the Bourbon arch	80

FIGURE	DESCRIPTION	PAGE
3.08	Depositional succession and log characteristics of the Riverton. Warner, and lower Blueiacket intervals	81
3.09	Riverton coal isopach map	84
3.10	Depositional succession and log characteristics of the middle Bluejacket interval	89
3.11	Neutral coal isopach map	91
3.12	Rowe coal isopach map	93
3.13	Dry Wood coal isopach map	95
3.14	Depositional succession and log characteristics of the Weir- Pittsburg and Tebo intervals	97
3.15	Weir-Pittsburg coal isopach map	99
3.16	Tebo coal isopach map	103
3.17	Depositional succession and log characteristics of the Scammon and Mineral intervals	105
3.18	Scammon coal isopach map	107
3.19	Mineral coal isopach map	110
3.20	Depositional succession and log characteristics of the Croweburg and Bevier intervals	113
3.21	Croweburg coal isopach map	115
3.22	Bevier coal isopach map	118
3.23	Depositional succession and log characteristics of the upper Mulky and Summit intervals	121
3.24	Mulky coal isopach map	123
3.25	Summit coal isopach map	127
3.26	Depositional succession and log characteristics of the Lexington interval	130
3.27	Lexington coal isopach map	132
3.28	Depositional succession and log characteristics of the Mulberry interval	134
3.29	Mulberry coal isopach map	136
	Chapter 4	
4.01	Recent coalbed gas well drilling activity	141
4.02	Structure contour map of the depth to Mississippian Limestone	143
4.03	Location map of coal desorption samples	146
4.04	Graph of "as received" gas contents of Bourbon arch and Cherokee basin coals	147
4.05	Graph of "moisture- and ash-free" gas contents of Bourbon arch and Cherokee basin coals	148
4.06	Color and symbol key for coal desorption samples	149
4.07	Graph of coal desorption curves for the Franklin County well	150
4.08	Graph of coal desorption curves for the Rose Hill #1-6 well	151

FIGURE	DESCRIPTION	PAGE
4.09	Graph of coal desorption curves for the KGS Eagle #5 well	152
4.10	Graph of coal desorption curves for the Smith #1-22 well	153
4.11	Bourbon arch net coal isopach map	157
4.12	Gas geochemistry cross plots and sample map	160
4.13	Graph of gas content (as received) versus depth	163
4.14	Graph of gas content (moisture- and ash-free) versus depth	164
4.15	Graph of gas content (moisture- and ash-free) versus ash content	164
4.16	Graph of gas content (moisture- and ash-free) versus calorific value	165
	Chapter 5	
5.01	Sequence stratigraphic interpretation of the Rose Hill #1-6 core	171
5.02	NE-SW sequence stratigraphic cross section	Packet
5.03	NW-SE sequence stratigraphic cross section	Packet
5.04	Graph of coal seam extent versus average coal thickness	194
5.05	Graph of coal seam extent versus seam continuity	194
5.06	Graph of gas content (moisture- and ash-free) versus ash content	196
5.07	Graph of gas content (as received) versus gas content (moisture- and ash-free)	198
5.08	Graph of average coal gas content (as received) versus average coal seam thickness	198
5.09	Graph of average coal gas content (as received) versus coal seam extent	199
5.10	Graph of average coal gas content (as received) versus coal seam continuity	199
5.11	Graph of gas content (as received) versus depth	200
	Chapter 6	
6.01	Illustration of the pre-Pennsylvanian depositional model	209
6.02	Illustration of the coastal plain depositional model	212
6.03	Illustration of the estuarine depositional model	216
6.04	Illustration of the marine regression model (Summit coal)	218
6.05	Illustration of the marine regression model (Mulky coal)	221
6.06	Illustration of the marine regression model (Lexington coal)	222
6.07	Illustration of the marine regression model (Mulberry coal)	224
6.08	Graph of coal seam extent versus average coal thickness	226
6.09	Graph of coal seam extent versus seam continuity	226

FIGURE	DESCRIPTION	PAGE
6.10	Graph of gas content (moisture- and ash-free) versus ash content	227
6.11	Graph of gas content (as received) versus gas content (moisture- and ash-free)	227
6.12	Graph of average coal gas content (as received) versus average coal seam thickness	228
6.13	Graph of average coal gas content (as received) versus coal seam extent	228
6.14	Graph of average coal gas content (as received) versus coal seam continuity	229
6.15	Graph of gas content (as received) versus depth	230

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
2.1	Lithofacies of Desmoinesian strata in the Bourbon arch	27
3.1	Summary of coal seam characteristics	78
4.1	Volumetric calculations for the Bourbon arch	156
6.1	Coal seam characteristics and interpretations	207
6.2	Coal characteristics of coastal plain-associated coals	214