CHAPTER 7. WATER SATURATIONS AND FREE WATER LEVEL

Alan P. Byrnes and Martin K. Dubois

Introduction

Determining accurate water saturations (S_w) in the Hugoton is important both for accurate volumetric calculations and for flow modeling, because water saturation can significantly influence gas relative permeability even in rocks at "irreducible" water saturation (Swi). It is well recognized by operators in the Hugoton, that determination of formation water saturations from induction wireline log response is problematic. Traditional methods of determining water including routine core saturations and induction wireline log analysis are complicated by deep mud filtrate invasion resulting from the common drilling management practice of drilling with a large hydrostatic overbalance relative to lowpressure reservoirs (Olson et al., 1997; Babcock et al., 2001). Routine core water saturations are high due to flushing during the coring operation that is further enhanced by capillary imbibition of water due to low gas pressure in the core and high drilling mud pressure. For log interpretation, invasion modeling by George et al. (2004) examined the complexity of the mud-filtrate invasion process and the influence of a low-resistivity mud-filtrate annulus on induction log response. Their study indicated that modeling of invasion is required to estimate gas saturation and that there is no simple procedure to correct previously acquired logs. Using conventional saturation calculation methods, calculated water saturations are significantly higher than true formation saturations.

Because water saturations cannot be reliably determined for most wells using logs, it was decided to estimate water saturations based on matrix capillary-pressure properties and determination of the free water level (FWL, level at which gas-brine capillary pressure is zero). Olson et al. (1997) employed a capillary pressure, matrix-based methodology for predicting water saturations for intervals in the Chase. The methodology they employed was limited in regional application because: 1) the capillary-pressure properties that did not provide unique curves for each lithofacies or porosity, and 2) were required only to predict water saturation in the upper Chase which is at low saturation where error is small. The following text discusses aspects of water saturation determination including the capillary-pressure properties of Hugoton rocks, the relationship between saturation and free water level, the FWL surface geometry, and sensitivity of the estimated water saturations and original gas in place (OGIP) to capillary pressure and FWL uncertainty.

7.1 CORE and LOG PETROPHYSICS

Alan P. Byrnes

The work of George et al. (2004) illustrated the limitations of determining water saturation from induction wireline logs and the inability to accurately use existing logs. Based on these results, analysis of electrical wireline log response to determine water saturation was not investigated further.

The present study uses a matrix capillary pressure method that calculates water saturation based on the capillary properties of a rock at any given position in the reservoir and its height above free water level (H_{afwl} , the datum at which capillary pressure is zero or gas and water pressure are equal). The physics governing determining water saturation from capillary pressure is well documented in the literature (Berg, 1975; Schowalter, 1979) and is not reviewed here. For a simple system the basic method involves the following:

1) Measure capillary pressure in the laboratory.

2) Convert laboratory capillary pressure data to reservoir gas-brine capillary pressure data using the standard equation (Purcell, 1949; Berg, 1975):

$$Pc_{\rm res} = Pc_{\rm lab} \left(\sigma \cos \theta_{\rm res} / \sigma \cos \theta_{\rm lab} \right) \tag{7.1.1}$$

where Pc_{res} is the gas-brine capillary pressure (psia) at reservoir conditions, Pc_{lab} is the laboratory-measured capillary pressure (psia), $\sigma \cos \theta_{res}$ is the interfacial tension (σ , dyne/cm) times the cosine of the contact angle (θ , degrees) at reservoir conditions, and $\sigma \cos \theta_{lab}$ is the interfacial tension times the cosine of the contact angle at laboratory conditions.

3) Convert reservoir capillary pressure curves to S_w versus H_{afwl} curves using the standard relation (Hubbert, 1953; Berg, 1975):

$$H_{afwl} = Pc_{res} / (C(\rho_{brine} - \rho_{gas}))$$
(7.1.2)

where H_{afwl} is the height (ft) above free-water level, Pc_{res} is the capillary pressure (psia) at reservoir conditions, ρ_{brine} and ρ_{gas} are the density of brine and gas at reservoir conditions and C is a constant (0.433(psia/ft)/(g/cc)) for converting density to pressure gradient. 4) Using the H_{afwl} - S_w curve to determine Sw at a any given H_{afwl} .

Fundamental to this methodology is an understanding and input of reservoir rock, fluid, and large-scale connectivity properties including:

1) The capillary pressure properties of the rock at any given location.

- 2) A model for conversion of capillary pressure to H_{afwl} .
 - 2.1) Understanding of fluid properties.
 - 2.1.1) Laboratory and reservoir interfacial tension and contact angle.
 - 2.1.2) Reservoir fluid composition and resulting densities.
- 3) H_{afwl} of the location, and implicitly the elevation of the FWL.

4) The implicit assumption that there is a continuous gas column between the defined FWL and the location at which saturation is being determined.

5) Gas and water pressure and change of the above properties through time (i.e. how have properties changed through time and is the system presently in equilibrium or in a transient state).

Each of these inputs is briefly discussed, with the H_{afwl} and FWL elevation discussed in section 7.2.

Capillary Pressure Properties

The capillary pressure properties of the rocks in the Hugoton are discussed in Chapter 4, Section 4.2. Analysis of capillary pressure curves for 252 samples, ranging in porosity, permeability and lithofacies, showed that capillary pressure properties differ among lithofacies and among different porosities within a lithofacies. Figure 7.1.1 illustrates example capillary pressure curves, expressed as H_{afwl} - S_w curves, for all 11 lithofacies at 10% porosity showing that water-saturation differences among lithofacies can vary up to 65% at a given H_{afwl} . Within a given lithofacies (e.g. continental very fine to fine-grained sandstone (L0)). water saturations can vary by up to 95% as a function of porosity. These differences in capillary pressure properties are sufficiently great that to predict accurate water saturations, it is necessary to be able to construct capillary pressure curves specific for the lithology and porosity of rock for which a predicted S_w value is needed.

Section 4.2 discusses the analysis of the capillary pressure data and the development of equations 4.2.15 through 4.2.19 that can predict S_w for each lithofacies and porosity. The complete H_{afwl} -S_w curves presented in Figures 4.2.67-4.2.77 were constructed using equation 4.2.17. Figures 7.1.1 and 7.1.2 illustrate curves developed using these equations. Several features common to Hugoton rocks of most lithofacies are illustrated in Figure 7.1.2. Threshold entry height, or the gas column height above the free water level necessary to begin to desaturate a rock, increases with decreasing porosity (and associated decreasing permeability and maximum pore-throat size). For high-porosity rocks (in situ porosity, $\phi_i > 18\%$), the threshold entry $H_{afwl}(H_{te})$ is generally less than 10 ft and these rocks have significant gas saturation throughout the Chase and Council Grove. The H_{te} for lower porosity ($\phi_i < 6\%$) mud- to silt-rich lithofacies (e.g., fine- to medium-grained siltstone-L2, mudstone-L4) can exceed 800 ft, and therefore these rocks require greater gas column height than is available in the Hugoton. These rocks are at $S_w=100\%$ in all areas of the Hugoton assuming the Hugoton is in capillary equilibrium. The mean *in situ* porosity for all Hugoton core measured is 8.5+5.1% (1 s.d.) and mean in situ porosity for many lithofacies in the Council Grove is similar to or less than this value. This places half of their L0-L4 lithofacies rocks with H_{te} in the Chase or higher.

Capillary Pressure Conversion

The conversion of laboratory-measured capillary pressure to equivalent reservoir gas column height above free water level requires the input of a range of fluid properties including interfacial tension, contact angle, and density. Because these properties change with gas and brine composition and reservoir pressure and temperature, and these vary in the Hugoton, there is some uncertainty in the conversion.

Conversion of laboratory air-mercury capillary pressure to reservoir condition gas-brine capillary pressure assumed several conditions. Laboratory air-mercury interfacial tension and contact angle values used were interfacial tension, IFT = 484 dyne/cm and contact angle = 140 degrees. Though IFT exhibits little error (\sim +1 dyne/cm), contact angles can vary from 110 to 160 degrees over different substrates and depending on whether mercury is advancing or retreating (Ritter and Drake, 1945). For carbonate surface the variance in contact angle is low $(+5^{\circ})$, but published work does not include low-porosity mudstones. Because there is no oil with surface active agents and little organic matter, there is no evidence to indicate that the CH₄-brine contact angle would be different than the value used, $\theta = 0$ degrees. Reservoir interfacial tension is dependent on reservoir temperature and pressure. Present temperatures are near 98 °F and are considered to vary from 90 to 100°F (32-38 °C) over the field. Reservoir pressure at discovery ranged from 400 to 450 psi (2.8-3.1 MPa) and may have originally been as high as 1,500 psi (10.3 MPa). At 400-450 psi and 90-100 °F, CH₄-water IFT ranges from 65.5 to 67.5+0.3 dyne/cm (Jennings and Newman, 1971). At 1,500 psi CH₄-water IFT ranges from 56.7 to 58.5+0.3 dyne/cm.

For the Chase and Council Grove, reported brine total dissolved solids range from 159,000 ppm to 239,000 ppm with most analyses reported with TDS> 210,000 ppm. For the calcium and sodium content of these brines and for a reservoir pressure of 450 °F and temperature of ~98°F, the brine range in density from 1.05 g/cc < ρ_{brine} < 1.19 g/cc but average near 1.16 g/cc. At reservoir pressures ranging from 100 psi (690 kPa) to discovery pressures near 400-450 psi (2.8-3.1 MPa) and possible early reservoir pressures as high as 1,500 psi (10.3 MPa), the gas density ranges from 0.008 g/cc < ρ_{gas} < 0.11 g/cc with a value near 0.031 g/cc at 450 psi and 98°F.

For this range in uncertainty the height above free water level conversions exhibit an average error of 4.5%. For this uncertainty a calculated height of 1,000 ft might be 955 ft or 1,045 ft or a height of 100 ft might be 95.5 ft or 104.5 ft.

For the purpose of converting air-mercury capillary pressure data to gas-brine capillary pressure data and gas-brine height above free water level at reservoir conditions, the following properties were assumed: $\rho_{gas} = 0.031$ g/cc, $\rho_{brine} = 1.16$ g/cc, and CH₄-brine IFT = 64 dyne/cm. These values are appropriate for the saturated brine present in the Hugoton and for the natural gas in the Hugoton at 400-450 psi.

Gas Column Continuity

Implicit in the calculation of water saturation from a capillary pressure curve is the assumption that there is a continuous gas column between the defined free water level, FWL, and the height at which saturation is being determined. It is clear from the H_{afwl} - S_w curves that for some lithofacies with porosity less than 6%, water saturations are 100%. The presence of a water-saturated layer can act to re-establish the FWL to the saturated layer. However, if gas is able to bypass a saturated region then the continuity of a continuous gas column is maintained. Bypass of areas where portions of a stratigraphic interval are predicted to be saturated is possible either through a large-scale fracture system or through regions where the saturated layer is improved in properties.

The existence of a regionally common reservoir pressure, a common pressure between the Chase and Council Grove at discovery and later in the reservoir history, and similar fluid contacts, argue that some form of reservoir communication exists. Fractures observed in core and regional time-sequenced mapping of reservoir pressure and production (Chapter 8) support the existence of a fracture communication system. Assuming fracture permeabilities of 0.5-1,000 md, the presence of even a large-scale fracture system, where fracture spacing is on a scale of miles, there is sufficient time within the Holocene to establish capillary pressure continuity in the system.

Gas/Water Pressure and Equilibrium

Use of the H_{afwl} - S_w curves formally only requires an understanding of the pressure difference between the gas and water phases and not definition of the absolute pressures. However, the subnormal pressures in the Hugoton, relative to reservoir depth, raise questions about what the water pressure is in the reservoir and therefore what is the capillary pressure. For many midcontinent reservoir systems, it is assumed that reservoir water pressure is near hydrostatic relative to the overlying surface. Studies of the Arbuckle in Kansas (Carr et al., 1986) have shown that Arbuckle pressures are tied to the hydrodynamic gradient established by recharge in Colorado and discharge in Missouri. Sorensen (2005) presented a similar model for the Chase and Council Grove that is discussed below. Sorenson (2005) proposed that the Chase and Council Grove groups were originally in hydrodynamic equilibrium with their outcrops, which were more deeply buried. Exhumation in the Late Tertiary and Holocene resulted in a drop in elevation of the outcrop. Assuming Chase/Council Grove communication with the Wolfcampian outcrop in northeast Kansas, water at the base of the Council Grove near sea level is at an approximate depth of 950 ft relative to the outcrop. For a brine density of ~ 1.06 g/cc, this depth is equivalent to a pressure of approximately 435 psi. Thus the gas reservoir pressure at discovery was equal to the aquifer pressure in the deeper Chase/Council Grove with a free water level approximately at sea level.

Based on the elevations and pressures, the model proposed by Sorenson would indicate that the Hugoton hydrodynamic system is approaching or has approached equilibrium. This model has potential implications for saturation calculations. If the system is presently at equilibrium then prediction of water saturations using capillary pressure methods is appropriate. However, it is possible that parts of the reservoir system might not have reached saturation equilibrium. Assuming that the Chase/Council Grove outcrops were at higher elevation in the past, then the FWL would have been at a higher elevation and, as Sorenson proposed, the reservoir pressure would have been higher in a smaller field located in the western portion of the present Hugoton and in the up dip portion of the structure. Assuming that the rocks are unlikely to have changed significantly in capillary pressure properties in the Late Tertiary, a higher FWL elevation in the same Hugoton field would require that the water saturations in the Chase would have been higher and that significant portions of the Council Grove would have been water saturated. With exhumation of the outcrop and a drop in Hugoton reservoir pressure, the expanding gas cap would have displaced water from the eastern Hugoton Chase and underlying Council Grove on a drainage cycle. With expansion of the gas cap the displacing water front would have been in continuous close contact with downdip water-saturated reservoir and would therefore have minimum relative permeability resistance to efficient water desaturation.

Water in the Chase in the western Hugoton could have been more restricted in its ability to flow out to the east and maintain equilibrium with the expanding hydrocarbon column. Water in the highest elevations of the reservoir might have been near critical water saturation but at significantly higher water saturation than capillary equilibrium would establish in the present reservoir system. As the gas column expanded down and to the east, the water in the upper Chase might be temporarily stranded by low relative permeability. This would leave the portions of the original, pre-exhumation, Hugoton gas field at higher water saturations than the present capillary pressure relations would predict. An existing large-scale fracture system and the ability of gas near the water table to displace water would allow the creation of a system that is regionally near equilibrium and has a FWL in equilibrium with the outcrop thus defining the existing capillary pressure system. If this model is correct then the "new" portions of the Hugoton field might be in capillary and water saturation equilibrium, but the "old" portions of the field are in gas pressure equilibrium, however, water saturations are elevated in a transient state as the water flows slowly out of the reservoir, restricted by ultra-low water relative permeability.

Examination of the H_{afwl} - S_w curves (Figures 4.2.67-4.2.77) and the water relative permeability curves (Figure 4.2.82) provides some semi-quantitative information. Using as an example a wackestone/wacke-packstone with 10% porosity (Figure 4.2.73) located in a high portion of the original reservoir, and assuming the original reservoir had a 300 ft gas column, the example limestone would have had a water saturation of 37%. With expansion of the gas cap and establishment of a new $H_{afwl} = 500$ ft, the predicted equilibrium saturation would be 25%. However, Figure 4.2.82 shows that the initial 37% was already approaching critical water saturation and 25% water saturation would have even lower water relative permeability.

It is important to note that the gas-water drainage relative permeability curves defined by laboratory testing are not designed to test for extremely low water flow rates and that ultra-low flow rates might still be sufficient to move large volumes of water over 10,000+ years.

7.2 RESOLVING FREE WATER LEVEL GEOMETRY

Martin K. Dubois

Estimating the free water level (FWL) position is critical for calculating water saturations using capillary pressures and the height above FWL. It has been recognized that the Hugoton field has a sloped gas-water contact, and we interpret a sloped FWL that is several 100's of feet (100's m) higher at the west updip margin than on the east downdip limits (Garlough and Taylor, 1941; Hubbert, 1953, 1967; Pippin, 1970; Sorenson, 2005). In this study we have defined the gas-water contact as the lowest position in the reservoir that a well can produce gas economically, without substantial water, and the free water level as the datum where gas-brine capillary pressure is zero. As shown in Section 4.2 (Petrophysics section of Reservoir Characterization Chapter 4), initial reservoir desaturation may not occur for some lithofacies until several tens or hundreds of feet (10's-100's m) above the free water level (threshold entry height). For typical reservoir rocks in the study area, packstone-grainstone 8-10% porosity, the FWL ranges from 50 to 70 ft (9-21 m) below the "gas-water" contact, a point at which the water saturation is approximately 70% (Figure 7.1.2). Across the range of lithofacies that are typically considered the main pay lithofacies (L6-L10) the height above FWL at which water saturations are approximately 70% broadens slightly.

The Hugoton gas reservoir is a dry-gas, pressure-depletion reservoir with very little or no support from the underlying aquifer. Vertical water flow is constrained by low vertical water permeabilities through low-porosity siltstone layers (k< 10⁻⁶ md (10⁻⁹ μ m2) for ϕ < 4%) and by low water relative permeability in carbonates with low water saturation. However, below the transition zone, water can be produced freely and reservoir pressures (600-700 psi; 4.1-4.8 MPa) approach regional hydrodynamic pressures for the depth (Sorensen, 2005). As noted above, the low reservoir gas pressures (~450 psi; 3.1 Mpa) and sub-hydrostatic water pressures below the transition zone were proposed by Sorenson (2005) to be the result of water pressure equilibrating with reservoir rocks exposed at outcrop in eastern Kansas and gas cap expansion, and consequent pressure decrease.

The Hugoton has long been considered a classic example of a giant stratigraphic trap (Garlough and Taylor, 1941; Parhman and Campbell, 1993) due to updip changes in lithofacies and petrophysical properties associated with these changes. However, dips on the apparent gas-water contact and FWL that cross stratigraphic boundaries cannot be fully explained by lateral heterogeneities. Hubbert (1953, 1967) proposed a conceptual model for the Hugoton being a hydrodynamic trap with trapping resulting from a hydraulic gradient coupled with permeability changes at the updip margin of the field. Pippin (1970) cited Hubbert's hydrodynamics and updip pinchouts of reservoir rock as the trapping mechanism. Olson et al., (1997) suggested that sealing faults, at least in the western portion of the field in Stanton and Morton counties, Kansas, compartmentalize the lower Chase reservoirs with the compartments having dramatically different gas-water contacts that rise to the west. Sorenson (2005) suggested that the downdip flow of gas during expansion of the Hugoton gas bubble might be responsible for the gas-water contact geometry.

Determining the mechanism for an uneven FWL was not an objective of our investigations but FWL had to be established for the calculation of water saturations using capillary pressure. Though others have presented general descriptions of the gas-water contact datum (e.g., Garlough and Taylor, 1941; Pippin, 1970; Parhman and Campbell, 1993), it has not been rigorously defined by earlier workers. Determining the FWL is no small task and merits investigation beyond this study, particularly along the east margin of the Panoma and Hugoton where there is a discrepancy between two methods employed. In the current version (Geomod 4-3), our estimation of the FWL (Figure 7.2.1) was derived using a combination of three indicators: (1) base of lowest perforations; (2) position where log calculated water saturation equals 100% in field pay zones; and (3) calculation of the FWL for an estimated original gas in place (OGIP). Figure 7.2.2 illustrates the height above FWL for key stratigraphic horizons in the Chase and Council Grove.

Within the central portion of the Panoma field, we based the depth of FWL on the average lowest reported productive perforations in the Council Grove (FWL = base of perforations + 70 ft (20 m)), 70 ft below perforations, assuming that operators have been efficient at identifying pay and avoiding water production. A significant difference between the base of Council Grove and the base of Chase perforations exists along the east side of the fields (Figure 7.2.3) with the lowest Chase perforations being 150-200 feet higher than in the Council Grove. We do not believe the Chase perforations represent the same relationship with free water level and that other factors contribute to this difference, and thus we must rely on other indicators outside the Panoma boundary. Along the eastern and western margin of the Hugoton in Kansas, where there is no underlying Council Grove production we used log-derived water saturations for estimating the FWL at the field boundary (Figure 7.2.4). FWL was estimated to be 30 ft (9 m) below the structural datum of the point where Chase pay zone log derived water saturation equals 100%. Thirty feet is the threshold entry pressure for many of the major pay lithofacies in the 8-10% porosity range. Limited data in the Oklahoma Panhandle required that FWL be estimated by back-calculating the FWL required for capillary pressure based original gas in place (OGIP) equal to the cumulative production divided by 70% (Figure 7.2.5). This method assumed that the Panhandle reservoir exhibited similar pressure depletion and gas production as reservoirs in Kansas. There is discrepancy in the FWL where two methods join on the east side of the field that is yet to be resolved. Base of Council Grove perforations are approximately sea level at the Panoma boundary, and the FWL would be at a datum of -70 based on the perforations +70 ft rule. However, the Chase FWL estimated on the basis of water saturations is a +50 at the east side of the Hugoton, 15-20 miles to the east. This cannot be the case if we assume the FWL on the east side of the field is flat. In an earlier version we chose to use a FWL closer to the perforations +70 ft method and extend a flat FWL (approximate datum = -40) from the Panoma edge to the east margin of the Hugoton. This resulted in what appeared to be an excess amount of gas in both the Chase and Council Grove in that area. In the current model version (Geomod 4-3) we did the opposite. A FWL of approximately +50 at the Hugoton margin was sloped down slightly to close to sea level at the Panoma margin where it was merged into the base of Council Grove perforations

+70 surface as it began its westward ascent. This resulted in what appear to be more appropriate OGIP in the Chase, but what may be too little in the Council Grove at the field edge. The FWL issue is yet to be completely resolved in this area, but appears to be satisfactory in most other areas of the current model.

The combining of the three methods resulted in a fairly smooth FWL surface. Contour lines in the Oklahoma Panhandle that were back calculated are an extension of those in Kansas that were based on the Council Grove perforations. The FWL subsea depth is approximately +50 ft (+15 m) at the east margin of the Hugoton to +20 ft (+6 m) at the Panoma margin and, moving west, begins to rise at a rate of 15 ft/mi (2.85 m/km) to a datum of +250 ft (+80 m), where it then rises at 50 ft/mi (9.4 m/km) to a height of +1000 ft (+300m) at the western margin of the Hugoton. The configuration closely parallels the gas-water contact described by Pippin (1970), although he placed the gas/water contact at the west side at a datum of +850 ft, and our estimate places the gas/water contact 20-50 ft (6-15 m) lower than he did at the east margin of the Hugoton. Our estimated gas-water contact is +120 ft (36 m) at this position in the field (70 ft above the FWL).

7.3 SENSITIVITY OF OGIP TO CAPILLARY PRESSURE AND FREE WATER LEVEL

Alan P. Byrnes and Martin K. Dubois

Geomodel calculation of gridcell saturation is based on:

Predicted gridcell lithofacies Predicted of gridcell porosity Predicted free water level Capillary pressure equation for lithofacies and porosity at gridcell height above free water level

Each of these inputs has error. Chapter 6 discussed error in the lithofacies prediction and Chapter 7 discussed error in porosity. In this section the influence of error and change in capillary pressure properties and free water level on predicted water saturation is examined.

Capillary Pressure Effects

The modeling of capillary pressure is discussed in Section 4.2. Figures 4.2.54-4.2.60 show the lithofacies-specific relationships between the threshold entry height, H_{te} , and *in situ* porosity. Figures 4.2.62-4.2.66 illustrate the lithofacies-specific relationships between the dimensionless H_{afwl} - S_w slope, t, H_f , and *in situ* porosity. Figures 4.2.67-4.2.77 illustrate modeled H_{afwl} - S_w curves for a range of porosities for each lithofacies. Included in Table 4.2.10 are the equation parameters used for H_{afwl} - S_w curve construction and S_w prediction. Also included in that table is the standard error of prediction for predicted H_{te} and H_f . The error of prediction varies among lithofacies but an average standard error of H_f of 0.5 is representative. Similarly, the error of prediction varies among lithofacies for the H_{te} but an average standard error of H_{te} of approximately a factor of 3X or in logarithmic units, 0.5, is representative. A crossplot of the log H_{te} error versus H_f (Figure 7.3.1) shows that for the Hugoton rocks analyzed these errors are positively correlated with a slope, determined by reduced major axis regression analysis, of 1.06 and an intercept of 0.013 (i.e., effectively a slope of 1 and intercept of zero). Figures 7.3.2-7.3.5 illustrate the log H_{te} error- H_f error relationship for each major lithofacies group. The possible cause for this relationship is not known. This relationship places an important constraint on error analysis and the influence of error on predicted water saturation. The direction of these errors on predicted water saturation act in an opposite direction. A positive error in log H_{te} results in a higher H_{te} and consequently high S_w at a given H_{afwl} . A corresponding positive error in H_f results in a shallower slope and narrower transition zone and thus lower S_w .

The errors shown in Figures 7.3.1-7.3.5 do not account for the absolute values of the predicted H_{te} . For some samples in these crossplots the predicted H_{te} is less than 20 ft where error prediction is not significant. Figure 7.3.6 shows the same $\log H_{te}$ error versus H_f error crossplot but with error assigned a value of zero for all samples where the predicted and measured H_{te} is less than 50 ft. For the samples clustered along the y-axis, only error in H_f has significant influence on predicted saturation. Differences in predicted water saturation as a function of variance in the H_{te} and H_f terms are a complex function of lithofacies (and the associated H_{afwl} - S_w curve), porosity, and H_{afwl} . As with the differences among H_{afwl} - S_w curves for different porosity rocks of the same lithofacies, the influence of error and the change in H_{afwl} - S_w curves that result vary among lithofacies and porosity. Figure 7.3.7 illustrates for a single lithofacies some of the differences that can exist. Because the variance is not a simple function of S_w , the use of cloud transforms in geomodel construction does not appropriately handle the possible variance.

It is important to note that the range in $H_{afwl}-S_w$ curves evident in 7.3.7 represents curves at 1 standard deviation and at 2 standard deviations. Because the error is approximately normally distributed, each of the outer curves representing 2 standard deviations represents a small (<2.3%) percent of the total population of rocks that might exhibit these extreme curves. To analyze the potential influence of the combined log H_{te} and H_f error, a continuous series of $H_{afwl}-S_w$ curves were constructed with errors ranging -2 standard deviations to +2 standard deviations for each lithofacies and a range in porosity from 4 to 18%. The curves were constructed by changing the log H_{te} and H_f terms in increments of 0.2 from -1 to +1 (i.e., -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The difference in predicted water saturation for the modified $H_{afwl}-S_w$ curve and the "baseline" curve, represented by the parameters in Table 4.2.10, was calculated for each porosity and for a range of H_{afwl} - S_w curves with parameters ranging from -1 to +1 were calculated and the saturation difference from the baseline determined.

Based on a normal distribution for the error, relative weights or probabilities of each H_{afwl} - S_w curve are not equal. For example, a curve with an H_f term increased from +0.0 to +0.2

represents approximately 15% of the total normally distributed population. A curve with an H_f term increased from +0.6 to +0.8 represents approximately 6% of the total normally distributed population. Thus, although a H_{afwl} -S_w curve at, for example 2 standard deviations, might predict a very different Sw from the baseline curve, the probability that that lithofacies with that porosity would exhibit such extreme properties is less than 2.3%. To account for the probability that a predicted Sw would occur, the combined sum of the predicted Sw – baseline Sw values weighted by their probability was calculated. The probability-weighted water saturation error calculated using this methodology thus represents the possible difference in saturation between the baseline-predicted Sw and an Sw that represents the probability-weighted realization of the possible range in curves based on the error. Tables 7.3.1-7.3.4 summarize the probability-weighted saturation errors for each of the lithofacies, for a selected range of porosity and at various H_{afwl} . In the tables where the probability-weighted saturation error is less than 10% (positive or negative) the values are uncolored. For errors greater than 10% and 15%, the cells are colored. It is evident from these tables that the baseline H_{afwl} - S_w curve models were generally insensitive to error in the equation parameters for many lithofacies, porosities, and Hafwl.

Each lithofacies exhibits a narrow range in H_{afwl} for a given porosity in which the probability-weighted saturation is 10-15% less than the baseline model (blue cells). This difference in saturation occurs in a high H_{afwl} for low-porosity rocks and migrates to low H_{afwl} with increasing porosity. This migration results from a shift in the transition zone to lower H_{afwl} as porosity increases. The presence of an interval of maximum saturation error is consistent with the comparatively rapid water saturation changes that occur in the transition zone for each lithofacies-porosity rock. In the transition zone, and particularly near the H_{te} , small changes in curve properties can change saturations significantly.

Average error between the probability-weighted saturations and the baseline model saturations is -1.0%. Though there is a pattern of saturation errors where the probability-weighted model predicts lower than the baseline model by 10-15%, the probability-weighted model never predicts more than 7.7% greater than the baseline model. Figure 7.3.8 illustrates the frequency distribution for all errors compared. Based on the distribution of porosities and depth compared, the fraction of the total population that exhibits high baseline Sw values ($\geq 8\%$) compared to the probability-weighted model is approximately 10%.

Free Water Level Position and Model Gas Saturation

Water saturation is a complex function of the lithofacies capillary pressure properties, porosity, and FWL. While each variable has uncertainty, FWL has the most influence on water saturation within its range of uncertainty, particularly at a datum close to the FWL. Sensitivity to the elevation of the FWL is largely a function of the height above free water of a rock's transition zone and the proximity of the rock to that transition zone. For rocks at elevations that place them near or in their transition zones, predicted S_w is often highly sensitive to differences in FWL. The same rocks at elevations above the transition zone (i.e. at "irreducible" water saturation) or below the transition zone (i.e. saturated at

 S_w =100%) are insensitive to FWL change. For higher porosity and permeability rocks the threshold entry heights are close to the FWL and transition zones are narrow. When these rocks are close to the FWL, even small changes in FWL can significantly change predicted water saturations. Alternately, these same rocks in the upper Chase are at low S_w and may exhibit less than 2% S_w change for FWL changes of many tens of feet. Low porosity and permeability rocks exhibit higher threshold entry heights, which tend to decrease the sensitivity to FWL change. However, even for these rocks, if the rock is at a depth where change in FWL results in the rock exceeding or dropping below the threshold entry height, a change in FWL can have significant effect on predicted S_w .

Tables 7.3.5-7.3.8 show the changes in saturation that occur from FWL elevation changes of +50, +25, -25 and -50 ft. Only the depth intervals and porosities that exhibit a difference in water saturation greater than 5% from the baseline Sw are listed. All other porosities and depths exhibit less than a 5% Sw change for the porosity classes shown (i.e. porosities presented in discrete intervals of 2%). These tables show the variable nature of the saturation changes and the heights above free water level at which significant Sw changes occur due to FWL-elevation change.

For better quality rocks the greatest impact on water saturations (S_w) and gas in place (GIP) is in the region closest to the FWL. This is observed at large scales by examining the impact at the field edges, but is also apparent when considering the three areas where we performed multi-well section simulations (Table 7.3.9). In each of the three simulation areas, we moved the FWL up or down to help match conditions that were felt to be more likely. In two cases, the Graskell and Flower, the FWL was moved from its original position, 75 ft below the lowest perforations in the Council Grove, to a lower position to increase the gas in the Council Grove. In the Hoobler, the initial FWL was an early Geomod 4 FWL where we experimented with extending the FWL +70 (base of perforations in the Council Grove +75 ft) to the edge of the field, resulting in a FWL that is approximately 100 ft below that which would be established using the 100% S_w method described in section 7.2, above. Here we raised the FWL by 100 ft.

It is readily evident in the Graskell model that a very slight change in FWL (25 ft) can have a dramatic effect in terms of percent increase in gas content zones close to the FWL. Here the Council Grove had a 44% increase while the Chase experienced only a 4% increase. The very upper zones in the Chase experienced almost no increase because they are already very high on the capillary pressure curve, while the Council Grove zones are well down in the transition zone. More than one variable was changed in the Flower models so they cannot be compared rigorously, but can be compared in relative terms. Here again, with a lowering of the FWL (by 50 ft), zones high in the section (Chase) saw little effect while the Council Grove experienced a substantial increase in gas. In the Hoobler, where only the FWL was modified (raised 100 ft), the effect was quite dramatic close to the FWL in the lower Chase and upper Council Grove.

In addition to the FWLs used in the simulation models, the FWL for the present version in the model areas is given in Table 7.3.9. The present model FWL in the Flower and Graskell areas is the average base of Council Grove perforations + 70 ft, fairly close to

the elevation of the FWL that yielded what was thought to be too little gas in the Council Grove. In the Hoobler the present field model FWL is about in the middle, representing the compromise position outside the Panoma but inside the Hugoton, described in section 7.2. The results of the simulations and general observations of GIP in relation to cumulative gas (discussed later) highlight the sensitivity of Sw and GIP to the FWL and the need to make adjustments at a more local level when working with the model at the well level.

References

Babcock, Jack A., et al., 2001, Reservoir characterization of the giant Hugoton gas field, Kansas: in Johnson, K. S. (ed.): Pennsylvanian and Permian Geology and Petroleum in the Southern Midcontinent, 1998 symposium: Oklahoma Geological Survey, Circular 104, p. 143-159.

Berg, R. R., 1975, Capillary pressures in stratigraphic traps: American Association of Petroleum Geologists, Bulletin, v. 59, p. 939-956.

Carr, J. E., McGowen, H. E., Gogel, T., 1986, Geohydrology of and potential for fluid disposal in the Arbuckle aquifer in Kansas: U.S. Geological Survey, Open-file Report No. 86-0491, 101p.

Garlough, J. L., and G. L. Taylor, 1941, Hugoton gas field, Grant, Haskell, Morton, Stevens, and Seward counties, Kansas, and Texas County, Oklahoma: *in* Levorsen, A. I., ed., Stratigraphic Type Oil Fields: American Association of Petroleum Geologists, Tulsa, p. 78-104.

George, B. K., C. Torres-Verdin, M. Delshad, R. Sigal, F. Zouioueche, and B. Anderson, 2004, Assessment of in-situ hydrocarbon saturation in the presence of deep invasion and highly saline connate water: Petrophysics, v. 45, no. 2, p. 141-156.

Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic conditions: American Association of Petroleum Geologists, Bulletin, v. 37, p. 1954-2026.

Hubbert, M. K., 1967, Application of hydrodynamics to oil exploration: 7th World Petroleum Congress Proceedings, Mexico City, v. 1B: Elsevier Publishing Co., LTD, p. 59-75.

Jennings, H.Y., Jr., and Newman, G. H., 1971, The effect of temperature and pressure on the interfacial tension of water against methane-normal decane mixtures: Transactions Am. Inst. Mechanical Engineers (AIME), v. 251, p. 171-175.

Olson, T. M., Babcock, J. A., Prasad, K. V. K., Boughton, S. D., Wagner, P. D., Franklin, M. K., and Thompson, K. A., 1997, Reservoir characterization of the giant Hugoton Gas

field, Kansas: American Association of Petroleum Geologists, Bulletin, v. 81, p. 1785-1803.

Parham, K. D., and J. A. Campbell, 1993, PM-8. Wolfcampian shallow shelf carbonate-Hugoton Embayment, Kansas and Oklahoma: *in* D. G. Bebout, ed., Atlas of Major Midcontinent Gas Reservoirs: Gas Research Institute, p. 9-12.

Pippin, L., 1970, Panhandle-Hugoton field, Texas-Oklahoma-Kansas-The first fifty years, *in* Halbouty, M. T. (ed.), Geology of Giant Petroleum Fields: American Association of Petroleum Geologists, Memoir 14, Tulsa, p. 204-222.

Purcell, W. R., 1949, Capillary pressure – their measurements using mercury and the calculation of permeability therefrom: American Institute of Mechanical Engineers Petroleum, Transactions, v. 186, p. 39-48.

Ritter, H.L., and L.C. Drake. 1945. Pore-size distribution in porous materials: Pressure porosimeter and determination of complete macropore-size distributions. Ind. Eng. Chem. Anal. Ed., v. 17, p 782–786.

Schowalter, T. T., 1979, Mechanics of secondary hydrocarbon migration and entrapment, American Association of Petroleum Geologists, Bulletin, v. 63, no. 5, p. 723-760.

Sorenson, R. P., 2005, A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko basin: American Association of Petroleum Geologists, Bulletin, v. 89, no. 7, p. 921-938.

Lithofacies	Height Above		Probability Weighted Water Saturation Error									
Code	Free Water				In situ Pc	prosity (%)						
	Level (ft)	18	16	14	12	10	8	6	4			
L0	10	2.9	-12.0	-5.2	-0.8	0.0	0.0	0.0	0.0			
L0	30	3.4	2.4	-7.1	-6.2	-1.1	0.0	0.0	0.0			
L0	50	1.7	3.2	-0.8	-11.6	-3.0	-0.3	0.0	0.0			
L0	100	0.4	2.2	2.1	-3.1	-8.6	-2.1	-0.2	0.0			
LO	150	0.1	1.3	2.4	-0.1	-8.9	-4.1	-0.6	0.0			
LO	200	0.0	0.9	2.2	1.1	-5.0	-5.9	-1.2	0.0			
L0	250	0.0	0.7	1.8	1.5	-3.1	-8.1	-2.0	-0.2			
L0	300	0.0	0.5	1.5	1.7	-1.6	-9.8	-2.6	-0.3			
L0	350	-0.1	0.4	1.3	1.8	-0.8	-8.9	-3.5	-0.5			
L0	400	0.0	0.3	1.2	1.7	-0.2	-7.2	-4.3	-0.7			
L0	450	0.0	0.2	1.0	1.7	0.2	-5.8	-5.0	-0.9			
L0	500	0.0	0.2	0.9	1.7	0.6	-4.6	-5.7	-1.2			
L0	550	0.0	0.2	0.8	1.6	0.8	-3.9	-6.6	-1.5			
L0	600	0.0	0.1	0.7	1.5	0.9	-3.3	-7.4	-1.8			
L1	10	-3.8	-9.9	-2.7	-0.2	0.0	0.0	0.0	0.0			
L1	30	2.1	-1.3	-13.8	-4.2	-0.5	0.0	0.0	0.0			
L1	50	2.1	2.0	-6.2	-9.3	-2.0	0.0	0.0	0.0			
L1	100	1.2	2.7	2.0	-11.6	-8.1	-1.6	0.0	0.0			
L1 /	150	0.8	2.2	3.4	-2.0	-13.9	-4.0	-0.3	0.0			
L1 /	200	0.6	1.6	3.5	1.9	-18.9	-6.2	-0.9	0.0			
L1	250	0.4	1.2	3.2	3.4	-11.3	-9.5	-1.9	0.0			
L1 /	300	0.4	1.0	2.9	4.2	-5.2	-11.8	-2.7	0.0			
L1 /	350	0.3	0.8	2.6	4.5	-1.5	-14.8	-4.1	-0.3			
L1	400	0.2	0.7	2.2	4.4	0.7	-17.6	-5.4	-0.6			
L1	450	0.2	0.6	1.9	4.3	2.5	-19.9	-6.4	-0.8			
L1	500	0.2	0.5	1.6	4.3	4.0	-21.6	-7.5	-1.2			
L1	550	0.2	0.5	1.4	4.1	4.7	-16.5	-9.2	-1.7			
L1	600	0.1	0.4	1.3	3.8	5.0	-12.3	-10.7	-2.2			
L2	10	-10.4	-5.6	-1.0	0.0	0.0	0.0	0.0	0.0			
L2	30	1.2	-6.9	-8.1	-1.7	0.0	0.0	0.0	0.0			
L2	50	2.2	-0.3	-15.1	-4.8	-0.6	0.0	0.0	0.0			
L2	100	1.8	2.6	-1.8	-13.6	-4.0	-0.4	0.0	0.0			
L2	150	1.2	2.7	2.0	-11.8	-7.9	-1.5	0.0	0.0			
L2	200	0.9	2.4	3.3	-4.0	-11.5	-2.9	-0.1	-0.1			
L2	250	0.7	2.0	3.4	-0.6	-15.7	-4.7	-0.5	-0.5			
L2	300	0.6	1.6	3.5	1.8	-18.7	-6.1	-0.8	-0.8			
L2	350	0.5	1.4	3.3	3.0	-14.2	-8.4	-1.6	-1.6			
L2	400	0.4	1.2	3.1	3.6	-9.4	-10.2	-2.2	-2.2			
L2	450	0.4	1.0	2.9	4.1	-5.5	-11.7	-2.6	-2.6			
L2	500	0.3	0.9	2.8	4.6	-2.6	-13.5	-3.5	-3.5			
L2	550	0.3	0.8	2.5	4.5	-0.9	-15.6	-4.5	-4.5			
L2	600	0.3	0.7	2.2	4.4	0.6	-17.4	-5.3	-5.3			

Table 7.3.1. Summary of difference in water saturation between a probability-weighted predicted water saturation (S_w , where distribution reflects variance in $H_{afwr}S_w$ curve parameters) and "baseline" model-predicted water saturation used in geomodel for continental siltstone and sandstone lithofacies. Lithofacies-porosity-height combinations where probability-weighted saturation is less than baseline S_w is <10% are shaded in blue.

Lithofacies	Height Above		Probability Weighted Water Saturation Error										
Code	Free Water				In situ Po	orosity (%)							
	Level (ft)	18	16	14	12	10	8	6	4				
L3	10	-1.1	-12.8	-3.6	-0.3	0.0	0.0	0.0	0.0				
L3	30	2.2	0.7	-14.6	-4.9	-0.5	0.0	0.0	0.0				
L3	50	1.8	2.6	-3.3	-10.8	-2.4	0.0	0.0	0.0				
L3	100	0.9	2.4	2.8	-8.4	-8.7	-1.6	0.0	0.0				
L3	150	0.6	1.7	3.4	-0.4	-14.9	-4.0	-0.3	0.0				
L3	200	0.4	1.2	3.3	2.8	-17.8	-6.2	-0.7	0.0				
L3	250	0.3	1.0	2.9	3.8	-9.4	-9.5	-1.7	0.0				
L3	300	0.3	0.8	2.6	4.6	-3.5	-11.8	-2.5	0.0				
L3	350	0.2	0.6	2.1	4.4	-0.6	-14.8	-3.6	-0.1				
L3	400	0.2	0.5	1.8	4.3	1.6	-17.6	-4.9	-0.4				
L3	450	0.1	0.4	1.5	4.3	3.3	-19.9	-5.9	-0.6				
L3	500	0.1	0.4	1.3	4.0	4.5	-21.6	-6.8	-0.8				
L3	550	0.1	0.3	1.1	3.7	4.9	-16.5	-8.3	-1.1				
L3	600	0.1	0.3	1.0	3.5	5.2	-12.3	-9.8	-1.6				
L10	10	-14.1	-7.7	-3.8	-1.8	-0.7	-0.2	0.0	0.0				
L10	30	2.2	-3.6	-10.1	-10.0	-5.7	-2.9	-1.4	-0.5				
L10	50	4.5	1.5	-2.4	-7.1	-10.6	-6.3	-3.5	-1.8				
L10	100	3.4	3.2	2.0	-0.3	-3.3	-6.8	-8.7	-5.1				
L10	150	2.1	2.8	2.4	1.3	-0.6	-3.0	-6.0	-8.4				
L10	200	1.2	2.2	2.3	1.6	0.5	-1.2	-3.5	-6.5				
L10	250	0.8	1.7	2.1	1.8	0.9	-0.4	-2.1	-4.4				
L10	300	0.5	1.3	1.8	1.7	1.2	0.3	-1.2	-3.2				
L10	350	0.4	1.1	1.6	1.7	1.3	0.5	-0.7	-2.4				
L10	400	0.2	0.9	1.4	1.6	1.3	0.7	-0.3	-1.6				
L10	450	0.2	0.8	1.2	1.4	1.3	0.8	0.0	-1.2				
L10	500	0.1	0.7	1.1	1.3	1.3	0.9	0.2	-0.9				
L10	550	0.1	0.6	1.0	1.2	1.3	0.9	0.3	-0.6				
L10	600	0.0	0.5	0.9	1.1	1.2	0.9	0.4	-0.4				

Table 7.3.2. Summary of difference in water saturation between a probability-weighted predicted water saturation (S_w , where distribution reflects variance in $H_{afwr}S_w$ curve parameters) and "baseline" model-predicted water saturation used in geomodel for marine siltstone and sandstone lithofacies. Lithofacies-porosity-height combinations where probability-weighted saturation is less than baseline S_w is <10% are shaded in blue.

Lithofacies	Height Above	Probability Weighted Water Saturation Error										
Code	Free Water				In situ Po	prosity (%)						
1.4	Level (ft)	18	16	14	12	10	8	6	4			
L4 L /	10	-11.2	-5.4 -8.0	-1.0	-0.4	-1.8	-0.4	0.0	0.0			
L4 I 4	50	-0.2	-0.0	-11.0	-5.0	-1.0	-0.4	-0.4	0.0			
L4	100	2.6	2.9	1.2	-6.2	-14.1	-7.0	-2.6	-0.5			
L4	150	2.0	3.0	3.1	0.0	-10.3	-12.1	-5.4	-1.9			
L4	200	1.4	2.6	3.3	2.4	-3.4	-16.8	-8.8	-3.7			
L4	250	1.1	2.2	3.4	3.4	-0.2	-12.0	-11.8	-5.2			
L4	300	0.9	1.8	3.0	3.7	2.1	-6.7	-15.0	-7.4			
L4	350	0.7	1.5	2.8	3.7	2.9	-3.1	-17.5	-9.3			
L4	400	0.6	1.3	2.6	3.7	3.5	-1.0	-15.5	-10.8			
L4	450	0.5	1.1	2.2	3.0	4.0	0.7	-11.4	-12.9			
L4 L 4	500	0.5	0.9	2.0	3.4 3.2	4.Z	2.1	-0.0	-14.9			
14	600	0.4	0.7	1.5	3.0	4.1	3.4	-3.0	-18.1			
L5	10	-11.3	-11.9	-5.3	-1.8	-0.4	0.0	0.0	0.0			
 L5	30	4.1	0.5	-11.5	-12.6	-5.6	-2.0	-0.4	0.0			
L5	50	4.2	4.3	0.3	-12.9	-12.3	-5.4	-1.9	-0.4			
L5	100	2.2	4.0	5.2	2.9	-8.0	-15.6	-7.5	-2.7			
L5	150	1.0	2.8	4.7	5.2	1.3	-13.2	-13.3	-5.8			
L5	200	0.6	1.6	3.6	5.3	4.7	-3.0	-18.8	-9.8			
L5	250	0.3	1.0	3.0	4.9	5.6	1.3	-15.0	-12.9			
L5	300	0.2	0.7	2.1	4.3	6.1	4.1	-7.5	-16.8			
LƏ 1.5	350	0.1	0.4	1.5 1.1	3.7 3.2	5.0 5.3	5.4 5.8	-2.1	-19.7			
LJ 15	400	0.0	0.3	0.8	3.2 2.7	5.0	5.0	2.6	-13.4			
L5	500	0.0	0.1	0.6	2.1	4.6	6.6	4.3	-8.8			
L5	550	0.0	0.1	0.4	1.7	4.1	6.3	5.7	-5.0			
L5	600	0.0	0.0	0.3	1.3	3.7	5.9	6.1	-1.8			
L7	10	-16.0	-14.4	-10.1	-7.4	-4.7	-3.1	-1.7	-0.9			
L7	30	3.9	2.5	-1.0	-5.8	-13.2	-15.8	-11.6	-8.3			
L7	50	4.5	4.8	3.9	2.6	-0.9	-5.7	-13.1	-15.8			
L/	100	2.8	3.5	4.4	4.6	4.7	3.0	1.7	-1.9			
L/ 17	200	1.3	2.1	3.1 2.0	ა.o ვ 1	4.0	4.7 1 1	4.3	3.Z 1 /			
17	200	0.7	0.7	2.0	21	3.1	3.8	4.7	4.4			
L7	300	0.2	0.4	0.8	1.4	2.4	3.3	4.1	4.5			
L7	350	0.1	0.3	0.6	1.0	1.8	2.9	3.6	4.4			
L7	400	0.0	0.2	0.4	0.8	1.3	2.2	3.2	4.0			
L7	450	0.0	0.1	0.3	0.6	1.0	1.8	2.9	3.6			
L7	500	0.0	0.0	0.2	0.4	0.8	1.4	2.4	3.3			
L7	550	0.0	0.0	0.1	0.3	0.7	1.2	2.0	3.1			
L/ 1 0	600	-0.1	0.0 12.1	0.1 12.1	10.2	0.5	1.0	1.7	2.7			
L0 I 8	10 30	-11.3	-13.1	-12.1	-10.8	-9.4	-0.0	-7.0	-0.2			
18	50	2.0	2.3	2.8	3.0	3.2	3.6	37	3.4			
L8	100	1.8	2.2	2.7	3.3	4.1	4.8	5.8	7.7			
L8	150	1.2	1.6	2.0	2.5	3.1	3.7	4.5	5.6			
L8	200	0.9	1.1	1.4	1.7	2.1	2.7	3.2	3.4			
L8	250	0.8	0.9	1.1	1.2	1.4	1.7	1.9	2.5			
L8	300	0.6	0.7	0.8	0.9	1.0	1.1	1.0	0.6			
L8	350	0.5	0.6	0.7	0.7	0.8	0.7	0.5	0.0			
L8	400	0.5	0.5	0.6	0.6	0.6	0.5	0.3	-0.2			
LÖ	450	0.4	0.4	0.5	0.5	0.4	0.3	0.1	-0.2			
∟o I.8	500 550	0.3	0.4 0.3	0.4 0.2	0.4 0.2	0.3	0.2	0.0 _0 1	-0.3			
L8	600	0.3	0.3	0.3	0.3	0.3	0.2	-0.1	-0.2			
	000	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.2			

Table 7.3.3. Summary of difference in water saturation between a probability-weighted predicted water saturation (S_w , where distribution reflects variance in $H_{afwr}S_w$ curve parameters) and "baseline" model-predicted water saturation used in geomodel for limestone lithofacies. Lithofacies-porosity-height combinations where probability-weighted saturation is less than baseline S_w is <10% are shaded in blue.

Lithofacies	Height Above		Probability Weighted Water Saturation Error										
Code	Free Water				In situ Po	prosity (%)							
	Level (ft)	18	16	14	12	10	8	6	4				
L6	10	-1.9	-0.9	-0.4	-0.1	0.0	0.0	0.0	0.0				
L6	30	-13.3	-9.7	-6.1	-4.2	-2.2	-1.3	-0.5	-0.2				
L6	50	-16.6	-18.7	-13.5	-9.8	-6.3	-4.3	-2.3	-1.4				
L6	100	4.9	0.4	-7.7	-19.2	-17.5	-12.2	-9.0	-5.7				
L6	150	7.4	6.9	3.2	-1.8	-11.7	-20.3	-15.5	-11.0				
L6	200	7.0	7.4	6.9	3.8	-0.9	-10.0	-20.9	-16.3				
L6	250	5.9	7.2	7.3	6.7	3.3	-1.5	-11.1	-20.4				
L6	300	5.0	6.1	7.6	7.1	6.2	2.1	-3.9	-14.0				
L6	350	3.7	5.6	6.6	7.4	6.8	4.7	0.2	-7.5				
L6	400	3.0	4.6	6.0	7.3	7.1	6.5	2.7	-2.5				
L6	450	2.6	3.7	5.6	6.5	7.4	6.8	4.6	0.2				
L6	500	1.2	3.1	4.8	6.0	7.4	7.0	6.2	2.2				
L6	550	0.5	2.8	4.0	5.7	6.8	7.2	6.6	3.8				
L6	600	0.2	2.1	3.5	5.4	6.3	7.4	6.8	5.1				
L9	10	-0.8	-6.2	-12.0	-12.7	-8.8	-5.9	-3.7	-2.3				
L9	30	4.7	4.0	2.5	0.6	-2.0	-4.6	-8.1	-10.9				
L9	50	3.2	3.6	3.3	2.5	1.3	-0.3	-2.3	-4.5				
L9	100	0.7	1.6	2.3	2.4	2.2	1.7	1.0	-0.1				
L9	150	0.2	0.8	1.3	1.7	2.0	1.8	1.5	0.9				
L9	200	0.0	0.4	0.9	1.3	1.5	1.6	1.5	1.2				
L9	250	0.0	0.3	0.6	1.0	1.2	1.4	1.4	1.2				
L9	300	-0.1	0.1	0.5	0.8	1.0	1.2	1.3	1.3				
L9	350	-0.1	0.1	0.4	0.6	0.9	1.0	1.1	1.1				
L9	400	-0.1	0.0	0.3	0.5	0.7	0.9	1.0	1.0				
L9	450	-0.1	0.0	0.2	0.5	0.7	0.8	0.9	1.0				
L9	500	-0.1	0.0	0.2	0.4	0.6	0.7	0.8	0.9				
L9	550	-0.1	0.0	0.1	0.3	0.5	0.7	0.8	0.8				
L9	600	0.0	0.0	0.1	0.3	0.5	0.6	0.7	0.8				

Table 7.3.4. Summary of difference in water saturation between a probability-weighted predicted water saturation (S_w , where distribution reflects variance in $H_{afwr}S_w$ curve parameters) and "baseline" model-predicted water saturation used in geomodel for fine-to medium-crystalline sucrosic dolomite lithofacies. Lithofacies-porosity-height combinations where probability-weighted saturation is less than baseline S_w is <10% are shaded in blue.

Lithofacies	L0				Lithofacies	L1				Lithofacies	L2			-
Free Water		Height		Difference	Free Water		Height		Difference	Free Water		Height		Difference
Level	In situ	Above	Predicted	in Sw from	Level	In situ	Above	Predicted	In Sw from	Level	In situ	Above	Predicted	in Sw from
Elevation	Porosity	Free	Water	Baseline	Elevation	Porosity	Free	Water	Baseline	Elevation	Porosity	Free	Water	Baseline
Change		Water	Saturation	Sw	Change		Water	Saturation	Sw	Change		Water	Saturation	Sw
(ft)	(%)	(ft)	(%)	(Sw%)	(ft)	(%)	(ft)	(%)	(Sw%)	(ft)	(%)	(ft)	(%)	(Sw%)
50	18	0	100	75	50	18	0	100	52	50	18	1	100	44
50	18	0	100	62	50	18	0	100	38	50	18	1	100	27
50	18	20	38	19	50	18	20	62	23	50	18	20	73	27
50	18	50	22	7	50	18	50	44	10	50	18	50	52	12
50	16	0	100	50	50	16	0	100	36	50	18	100	40	6
50	16	20	100	32	50	16	20	100	14	50	16	1 20	100	24
50	16	50	45	12	50	16	50	58	15	50	16	50	69	18
50	16	100	32	6	50	16	0	43	7	50	16	100	52	8
50	14	0	100	22	50	14	0	100	7	50	14	20	100	14
50	14	20	100	37	50	14	20	100	30	50	14	50	100	28
50	14	50 100	72	17	50	14	50	83	24	50	14	100	72	13
50	14	20	100	0 9	50	14	50	59 48	6	50	14	100	100	o q
50	12	50	100	20	50	12	50	100	10	50	12	150	91	14
50	12	100	80	10	50	12	0	90	19	50	12	200	77	9
50	12	150	70	7	50	12	50	71	11	50	12	250	68	7
50	10	150	96	8	50	12	200	61	7	50	10	300	100	8
50	10	200	88	6	50	10	200	100	13	50	10	350	92	8
25 25	18	15	44	02 19	50	10	250 300	87 76	10 8	50 25	10	400	84 100	7 27
25	16	1	100	32	50	10	350	69	6	25	18	15	81	25
25	16	15	78	29	50	8	500	100	8	25	18	45	54	8
25	16	45	47	9	50	8	550	92	7	25	16	15	100	24
25	14	15	100	22	25	18	0	100	38	25	16	45	73	12
25	14	45	75	12	25	18	5 45	70	21	25	10	15	58 100	14
25	12	45	100	9	25	16	43	100	14	25	14	75	83	14
25	12	75	89	8	25	16	5	97	33	25	14	125	65	6
-25	18	45	24	-14	25	16	45	61	10	25	12	125	100	9
-25	18	65	19	-6	25	16	75	49	6	25	12	175	83	6
-25	16	45	47	-21	25	14	5	100	7	-25	18	45	54	-19
-25	10	00 //5	40	-10	20 25	14	45	68	17	-25	18	00 /5	47	-9
-25	14	45 65	65	-23	25	14	75	100	10	-25	16	43 65	62	-27
-25	14	95	56	-7	25	12	25	79	8	-25	16	95	53	-7
-25	12	65	93	-7	25	10	225	93	7	-25	14	65	89	-11
-25	12	95	82	-9	-25	18	45	46	-16	-25	14	95	74	-12
-25	12	125	75	-6 10	-25	18	65	40	-8	-25	14	125	65	-7
-50	18	20	18	-19	-25	16	45	61 52	-25	-25	12	175	83	-8 -27
-50	16	70	38	-30	-25	16	95	44	-12	-50	18	90	40	-15
-50	16	90	34	-16	-25	14	45	87	-13	-50	18	120	37	-8
-50	16	120	30	-8	-25	14	65	73	-20	-50	18	150	34	-6
-50	16	150	27	-6	-25	14	95	61	-10	-50	16	70	60	-40
-50	14	70	63	-37	-25	14	25	53	-6	-50	16	90	54	-22
-50	14	90 120	5/	-21	-25	12	95 25	93	-7	-50	16	120	48	-12
-50	14	120	47	-12	-25	12	25 75	65	-11	-50	10	70	43	-14
-50	12	70	91	-9	-25	10	225	93	-7	-50	14	90	76	-24
-50	12	90	83	-17	-25	10	275	81	-6	-50	14	120	66	-20
-50	12	120	76	-15	-50	18	70	39	-23	-50	14	150	59	-13
-50	12	150	70	-10	-50	18	90	35	-13	-50	14	200	52	-8
-50	12	200	64	-/	-50	18	20	32	-/	-50	12	150	91 77	-9
-50	10	250	82	-0	-50	16	90	45	-19	-50	12	250	68	-14
25	18	45	24	5	-50	16	20	40	-10	-50	12	300	61	-7
-25	16	95	33	-5	-50	16	50	36	-7	-50	10	350	92	-8
-50	14	200	42	-5	-50	14	70	70	-30	-50	10	400	84	-8
50	14	150	47	5	-50	14	90	62	-30	-50	10	450	77	-7
-50	18	120	14	-5	-50	14	20	54	-16					
-50	12	250	59	-5	-50	14	50	48	-11					
					-50	14	∠00 20	42 81	-6					
					-50	12	50	71	-19					
					-50	12	200	61	-11					
					-50	12	250	53	-7					
					-50	10	250	87	-13					
					-50	10	300	76	-10					
					-50	10	350 400	63	8- -6					
					-50	8	550	92	-8					
					-50	8	600	85	-7					
					-50	8	650	79	-6					

Table 7.3.5.Summary of depth intervals and porosities by lithofacies for continental siltstones and sandstones that exhibit water saturation change greater that 5% due to FWL elevation change. Intervals and porosities not shown exhibit < 5% Sw change due to elevation changes from -50 to +50 ft.

Lithofacies	L3				Lithoracies				
Free Water	In aitu	Height	Dradiated	Difference	Free Water	In aits	Height	Dradiated	Difference
Elevation	Porosity	Free	Water	Baseline	Elevation	Porositv	Free	Water	Baseline
Change	,	Water	Saturation	Sw	Change	,	Water	Saturation	Sw
(ft)	(%)	(ft)	(%)	(Sw%)	(ft)	(%)	(ft)	(%)	(Sw%)
50	18	1	100	57	50	18	1	100	49
50	18	1	100	44	50	18	1	100	25
50	18	50	40	9	50	18	50	45	15
50	16	1	100	42	50	18	100	30	6
50 50	16 16	20	100	22	50 50	16 16	1	100	32
50	16	50	53	14	50	16	20	94	42
50	16	100	39	6	50	16	50	62	17
50 50	14	20	100	35	50	16	100	45	16
50	14	50	77	22	50	14	20	100	33
50 50	14 14	100	55 45	10	50 50	14 14	50 100	77 58	18
50	12	50	100	15	50	12	20	100	20
50	12	100	85	18	50	12	50	90	19
50 50	12	200	57	7	50	12	150	62	e e
50	10	200	98	14	50	10	20	100	8
50 50	10	250	84 74	10	50 50	10 10	50 100	100	17
50	10	350	66	6	50	10	150	73	ė
50	8	500	100	8	50	8	50	100	7
25	0 18	550	92 100	44	50	0 8	150	93 83	6
25	18	15	63	19	50	6	100	100	7
25 25	18	45	41	6	50 25	6 18	150	93 100	6
25	16	15	88	30	25	18	15	89	38
25	16	45	55	9	25	18	45	48	1
25 25	14	45	81	15	25	16	15	100	32
25	14	75	63	8	25	16	45	65	12
25 25	12	75 125	100 74	15	25 25	16 14	75 15	51 100	16
25	10	225	90	6	25	14	45	80	13
-25	18	45	41	-15	25	14	75	65	
-25 -25	18	45	36	-7 -23	25 25	12	45 75	93 78	13
-25	16	65	47	-11	25	10	45	100	1
-25 -25	16 14	95 45	40 81	-6 -19	25 25	10	75 75	90 100	
-25	14	65	67	-18	-25	18	45	48	-28
-25	14	95	56	-9	-25	18	65	39	-1:
-25	14	95	49 87	-0	-25	16	95 45	65	-30
-25	12	125	74	-10	-25	16	65	54	-14
-25 -25	12	175	61 90	-6 -8	-25 -25	16 14	95 45	46 80	-20
-50	18	70	35	-21	-25	14	65	69	-1
-50	18	90 120	32	-11	-25	14	95	60	-6
-50	16	70	29 46	-32	-25	12	45 65	93 82	-1
-50	16	90	41	-17	-25	12	95	72	-8
-50 -50	16 16	120 150	36	-9 -6	-25 -25	10 10	65 95	94 84	
-50	14	70	65	-35	-25	8	95	94	-(
-50	14	90 120	57	-28	-50	18 18	70	37	-34
-50	14	150	45	-10	-50	18	120	27	-10
-50	14	200	39	-6	-50	18	150	24	-(
-50	12	90 120	90 76	-10 -24	-50	16	70 00	53 ⊿7	-4
-50	12	150	67	-24	-50	16	120	41	-1
-50	12	200	57	-10	-50	16	150	37	-
-50 -50	12	250 250	50 84	-7 -14	-50 -50	14	70 90	67	-3
-50	10	300	74	-10	-50	14	120	54	-1:
-50	10	350	66 60	-8	-50	14 12	150	50 80	-9
-50	8	550	92	-8	-50	12	90	74	-23
-50	8	600	85	-7	-50	12	120	67	-1:
					-50	12	150 200	62 56	-9
					-50	10	70	92	
					-50	10	90	85	-1
					-50	10 10	120 150	78 73	-14
					-50	10	200	67	-(
					-50	8	120	88	-12
					-50	8	200	63 77	-10
					-50	6	150	93	-}
					-50	6	200	86	-6

Table 7.3.5. Summary of depth intervals and porosities by lithofacies for marine siltstones and sandstones that exhibit a water saturation change greater that 5% due to FWL elevation change. Intervals and porosities not shown exhibit < 5% Sw change due to elevation changes from -50 to +50 ft.

Lithofacies	L4				Lithofacies	L5				Lithofacies	L7				Lithofacies	L8			
Free Water Level	In situ	Height Above	Predicted	Difference in Sw from	Free Water Level	In situ	Above Froo	Predicted	Difference in Sw from	Free Water Level	In situ	Height Above	Predicted	Difference in Sw from	Free Water Level	In situ	Height Above	Predicted	Difference in Sw from
Change	Porosity	Water	Saturation	Sw	Change	Porosity	Water	Saturation	Sw	Change	Porosity	Water	Saturation	Sw	Change	Porosity	Water	Saturation	Sw
(ft) 50 50	(%) 18 18	(ft) 1 1	(%) 100 100	(Sw%) 39 18	(ft) 50 -50	(%) 18 14	(ft) 1 70	(%) 100 52	(Sw%) 59 -48	(ft) 50 -50	(%) 18 12	(ft) 1 70	(%) 100 48	(Sw%) 58 -52	(ft) 50 50	(%) 18 18	(ft) 1 1	(%) 100 100	(Sw%) 42 25
50 50	18 18 18	20 50	82 56 41	34 14 7	50 50	14 16 16	20 1 70	100 100 39	48 46 -43	50 50	12 16 14	20 1 70	100 100 41	52 51 -46	50 50	18 18 18	20 50 100	75 53 41	28 12
50 50	16 16	1 20	100 100	23 40	50 25	16 16	20 15	82 97	43 43	50 -50	14 10	20 70	87 56	46	50 50	16 16	1	100 100	42 23
50 50 50	16 16 14	50 100 20	69 51 100	19 9 24	25 50 -50	18 18 12	1 1 90	100 100 61	39 39 -39	50 25 50	10 14 14	20 15 1	100 100 100	44 43 43	50 50 50	16 16 16	20 50 100	77 53 40	31 13 6
50 50	14 14	50 100	89 64	25 11	50 -25	12 16	50 45	90 50	33 -31	-50 50	16 16	70 20	35 75	-39 39	50 50	14 14	1	100	41 20
50 50	12	50 100	100 82	18 16	-20 -50 50	18 18	70	30 61	-31 31	-25 25	12 18	45 1	62 100	-38 36	50 50	14 14 14	50 100	53 39	14 6
50 50 50	12 12 10	150 200 100	67 58 100	9 6 12	25 -50 -50	18 14 10	15 90 120	71 44 71	31 -30 -29	50 -50 50	18 8 8	1 70 20	100 65 100	36 -35 35	50 50 50	12 12 12	1 1 20	100 100 84	40 16 39
50 50	10 10 10	150 200 250	88 75 67	13 9	-50 50	12 12 14	70 20	72 100 100	-28 28 26	-50 -50	6 8 18	90 90 70	65 56 30	-35 -35 -34	50 50	12 12 10	50 100 1	54 38 100	15 7 39
50 50	8	200 250	100 90	10	50 25	14	1 45	100	26 25	50 25	18 18	20 15	64 76	34 34	50 50	10	1 20	100	11
50 50	8	350 400	74 95	6	-25 50 -25	14	50 45	64 38	-24 23 -22	-25 25 50	12	45 15 1	100 100	-33 33 33	50 50	10	100	37 100	7
50 25 25	6 18 18	450 1 15	88 100 93	6 18 32	-50 -50 -50	12 16 10	120 90 150	50 33 61	-22 -21 -20	50 -50 50	6 10 4	50 90 50	92 48 100	31 -30 29	50 50 50	8 8 8	20 50 100	96 54 35	52 19 8
25 25 25	18 16 16	45 15 45	58 100 73	10 23 13	50 -25 50	10 14 10	100 65 50	81 54 100	20 -19 19	-25 -25 50	16 10 8	45 45 50	46 73 79	-29 -27 27	50 50 50	6 6	1 20 50	100 100 54	36 58 22
25 25	16 14	75 45	58 93 72	7	25 25	10 16	75	99 100	18	-50 25	12 16	90 1	41 100	-26 25	50 50	6	100	33 100	8 34
25 25 25	14 12 12	75 75 125	73 95 73	9 13 7	-50 -50	16 8 8	200 150	72 89	-17 17	-25 -50	18 6	45 70	40	-25 -25 -25	50 50 50	4 4 4	20 50 100	55 30	59 25 9
25 25 25	10 10 8	125 175 225	98 81 96	96	25 50 -25	14 16 10	45 50 95	69 47 84	17 16 -16	50 -50 -50	6 4 4	20 90 120	100 75 64	25 -25 -24	25 25 25	18 18 18	1 15 45	100 83 55	25 25 8
-25 -25 -25	18 18 18	45 65 95	58 50 42	-24 -11	-50 -50 -25	18 14 16	90 120 65	26 37 40	-15 -15 -14	50 -25 25	10 8 6	50 65 45	68 68 98	23 -23 23	25 25 25	16 16	1 15 45	100 87 56	23 28
-25	16 16	45 65	73	-27 -15	-20 -50 50	12	150 100	40 43 57	-13	25 25 50	10 10	40 15 1	100 100	22	25 25 25	14	45 1 15	100 91	20 32
-25 -25 -25	16 14 14	95 45 65	52 93 78	-8 -7 -21	-25 -50 -50	12 10 6	95 90 300	59 87 79	-13 -13 -12	-50 -25 -50	14 6 6	90 65 120	35 79 55	-22 -21 -21	25 25 25	14 12 12	45 1 15	56 100 97	10 16 37
-25 -25 -25	14 14 12	95 125 95	65 57 85	-10 -6 -14	50 25 -25	6 12 10	250 75 125	91 69 69	12 12 -12	50 -25 25	12 10 8	50 65 45	58 58 84	20 -20 20	25 25 25	12 12 10	45 75 1	56 44 100	11 6 11
-25 -25	12 10 18	125 175 70	73 81 48	-9 -7 -34	50 25	18 16 10	50 45 200	36 50	12 12 -11	-50 -50	16 8 14	90 120 50	30 47 50	-19 -18 17	25 25 25	10 10	15 45 75	100 57 43	39 12
-50 -50	18 18	90 120	43 38 35	-18 -10	50 -50	10	150 150 125	61 89	-11	-25 25	12 10	65 45	50 73 26	-17 17	25 25 25	8	15 45 75	100 58 42	38 14 7
-50 -50	16 16	70 90	60 53	-40 -24	50 -50	8	100 250	100 100 61	-11	-30 -25 -50	8 10	45 120	84 40	-16 -15	25 25 25	6	15 45	100	36 16
-50 -50 -50	16 16 14	120 150 70	47 42 76	-13 -9 -24	50 -50 -25	8 16 18	200 120 65	72 28 31	11 -11 -10	-50 50 50	4 4 16	150 100 50	56 71 43	-15 15 15	25 25 25	6 4 4	75 15 45	40 100 60	8 34 19
-50 -50 -50	14 14 14	90 120 150	67 58 52	-32 -17 -11	-25 -50 50	8 14 14	175 150 100	79 32 42	-10 -9 9	-25 -25 25	4 14 12	95 65 45	73 43 62	-15 -14 14	25 -25 -25	4 18 18	75 45 65	38 55 48	8 -19 -10
-50 -50	14	200	46 87	-7	-50 50	4	450	42 87 97	-9	25 25 -50	12	45 75 120	84 35	13 -13	-25 -25 -25	16	45 65	40 56 48	-10 -22 -10
-50 -50 -50	12 12 12	120 150 200	75 67 58	-24 -16 -9	-50 50 -50	6 6 6	250 200 350	91 100 69	-9 9 -9	-50 50 25	6 6 14	150 100 1	48 61 100	-13 13 13	-25 -25 -25	14 14 14	45 65 95	56 48 40	-24 -11 -6
-50 -50	12 10	250 150 200	51 88 75	-6 -12	50 -25	6 14	300 95	79 43 28	9 -9	50 50	14 18	1 50	100 37	13 13	-25 -25	12 12	45 65	56 47 39	-28 -13
-50	10	250 300	67 60	-9	25 25 25	10 14	125 75	69 50	8	-25	16 14	65 45	37 54	-12 12	-25 -25	10	45 65	57 46	-32 -14
-50 -50 -50	8 8 8	250 300 350	90 81 74	-10 -9 -7	25 -25 -50	6 12 18	225 125 120	99 49 22	8 -8 -8	-50 25 50	4 4 4	70 45 20	88 100 100	-12 12 12	-25 -25 -25	10 8 8	95 45 65	38 58 46	-7 -38 -16
-50 -50 -50	8 6	400 450 500	68 88 82	-6 -7 -6	-50 50 -50	8 8 12	300 250 200	53 61 36	-8 8 -8	25 -50 -50	6 14 8	75 120 150	72 30 41	11 -11 -11	-25 -25 -25	8 6 6	95 45 65	36 58 45	-8 -42 -19
	-				50 25	12	150 175	43 79	8	50 -25	8	100 95	52 54	-11	-25 -25	6	95 45	34 60	-8 -40
					-50 50 -50	4 4 10	500 450 250	80 87 42	-8 8 -7	-25 25 25	18 16 8	45 75	32 46 62	-11 11 10	-25 -25 -50	4 4 18	65 95 70	43 31 47	-23 -9 -28
					50 -50	10 6	200 400	50 62	7 -7	-50 -50	16 10	120 150	26 35	-10 -10	-50 -50	18 18	90 120	43 38	-15 -9
					-50 50	16 16	150 100	25 31	-7 7	25 50	8	100	45 100 100	9	-50 -50 -50	16 16	150 70 90	30 47 42	-0 -31 -16
					-25 -25 -25	6 16 10	275 95 175	84 32 55	-7 -6 -6	-25 25 -25	10 18 4	95 45 125	46 40 62	-9 9 -9	-50 -50 -50	16 16 14	120 150 70	37 34 46	-9 -6 -34
					-50 50 -25	4 4 8	550 500 225	73 80 66	-6 -6	-50 50 25	4 4 10	200 150 75	47 56 53	-9 9 8	-50 -50 -50	14 14 14	90 120 150	41 36 33	-18 -10 -6
					25 -50	16 8	75	37 47	6	-50 -50	18 12	120 150	22	-8 -8	-50 -50	12	70	45 40	-39 -20
					50 25 -50	8 6 6	275 450	53 84 57	6 -6	-25 -25	12 4 12	65 95	39 92 40	8 -8 -8	-50 -50 -50	12 12 10	120 150 70	35 31 45	-11 -7 -44
					50 25	6 12	400 125	62 49	6 6	-25 -50 50	6 6 6	125 200 150	53 40 48	-8 -8 8	-50 -50 -50	10 10 10	90 120 150	39 33 29	-22 -11 -7
										25 -50	12 14	75 150	46	7	-50 -50	8	70 90	44	-52 -25
										50 -25 -25	14 14 8	100 95 125	33 34 46	7 -7 -7	-50 -50 -50	8 8 6	120 150 70	31 27 42	-13 -8 -58
										-50 50 25	8 8 4	200 150 125	35 41 62	-6 6	-50 -50 -50	6 6 6	90 120 150	35 29 24	-28 -14 -8
										25 -50	14 16	75	39 22	6 -6	-50 -50	4	70	41	-59 -33

Table 7.3.7.Summary of depth intervals and porosities by lithofacies for limestone that
exhibit a water saturation change greater that 5% due to FWL elevation change.
Intervals and porosities not shown exhibit < 5% Sw change due to elevation changes
from -50 to +50 ft.

Lithofacies	L6	112:244		D:#	Lithofacies	L9	1 Inimate		D:#
Free vvater Level	In situ	Above	Predicted	in Sw from	Free Water Level	In situ	Above	Predicted	in Sw from
Elevation	Porosity	Free	Water	Baseline	Elevation	Porosity	Free	Water	Baseline
(4-)	(81)		(01)	(0	(n)	(01)			(0
(π) 50	(%)	(ft) 20	(%)	(SW%) 31	(π) 50	(%)	(π) 1	(%)	(SW%) 72
50 50	18 18	50 100	92 50	42 15	50 50	18 18	1 20	100 44	56 24
50	18	150	35	8	50	18	50	25	9
50	16	50	100	37	50	16	1	100	44
50 50	16 16	100 150	63 44	19 10	50 50	16 16	20 50	56 34	28 11
50 50	16	200	34	6	50 50	14	1	100	51
50	14	100	78	23	50	14	20	68	30
50 50	14	200	55 43	12	50 50	14	100	44	12
50 50	12 12	100 150	97 68	28 15	50 50	12 12	1	100 100	42
50	12	200	53	9	50	12	20	78	32
50	12	100	100	15	50	12	100	53 40	6
50 50	10 10	150 200	85 66	18 11	50 50	10 10	1	100 100	32 12
50 50	10 10	250 300	55 47	8	50 50	10 10	20	88 62	34 14
50	8	150	100	18	50	10	100	48	7
50 50	8	200	82 68	14 10	50 50	8	20	100	23 34
50 50	8	300 200	58 100	7 16	50 50	8	50 100	71 56	15 7
50	6	250	84	12	50	6	1	100	15
50 50	6	350	63	9	50 50	6	20 50	79	29 16
50 50	4	250 300	100 89	11 11	50 50	6 4	100 1	63 100	8
50	4	350	78	8	50	4	20	100	22
25	18	45	100	31	50	4	100	70	8
25 25	18 18	75 125	65 41	14	25 25	18 18	1 15	100 52	56 24
25 25	16 16	45 75	100 80	15 18	25 25	18 16	45 1	26 100	6 44
25	16	125	52	8	25	16	15	65	27
25	14	125	64	9	25	14	45 1	100	32
25 25	12 12	125 175	80 60	12 6	25 25	14 14	15 45	78 46	29 9
25	10	125	99 74	14	25	12	1	100	22
25	8	175	92	10	25	12	45	56	9
25 25	8	225 225	74 91	6 8	25 25	10 10	1 15	100 99	12 31
25 -25	4	275	95 73	-27	25 25	10 10	45 75	65 53	10 6
-25	18	95	53	-16	25	8	15	100	23
-25 -25	18	125	41 91	-9 -9	25 25	8	45 75	73 61	10
-25 -25	16 16	95 125	66 52	-20 -11	25 25	6	15 45	100 82	15 11
-25	16	175	39	-6 -19	25	6	75	69 100	6
-25	14	125	64	-14	25	4	45	89	11
-25 -25	14	1/5	48 80	-7 -17	-25	4 18	75 45	26	-17
-25	12	175	60	-8	-25	18	65	21	-7
-25	10	225	60	-10	-25	16	65	30	-20
-25 -25	8	175 225	92 74	-8 -8	-25 -25	14 14	45 65	46 39	-22 -10
-25 -25	6	225	91 77	-9 -6	-25	12 12	45	56 48	-23
-25	4	325	83	-6	-25	12	95	41	-6
-50	18	90	55	-31	-25	10	45 65	56	-24 -11
-50 -50	18 18	120 150	43	-26 -15	-25 -25	10 8	95 45	49 73	-6 -24
-50	18	200	27	-8	-25	8	65	65	-12
-50 -50	16 16	70 90	85 69	-15 -31	-25 -25	8 6	95 45	57 82	-6 -18
-50 -50	16 16	120 150	54 44	-32 -19	-25 -25	6	65 95	73 64	-12 -7
-50	16	200	34	-10	-25	4	45	89	-11
-50	10	90	28	-0 -15	-25	4	95	71	-7
-50 -50	14 14	120 150	67 55	-33 -23	-50 -50	18 18	70 90	20 17	-24 -11
-50	14	200	43	-12	-50	18	120	14	-6
-50 -50	14	120	35	-7 -17	-50	16	90	28 25	-26
-50 -50	12 12	150 200	68 53	-28 -15	-50 -50	16 14	120 70	21 37	-7 -30
-50	12	250	44	-9	-50	14	90 120	33	-16
-50	10	150	85	-15	-50	14	150	29	-6
-50 -50	10 10	200 250	66 55	-18 -11	-50 -50	12 12	70 90	46 41	-32 -17
-50	10 10	300 350	47 41	-8 -6	-50	12 12	120 150	37	-9 -6
-50	8	200	82	-18	-50	10	70	55	-34
-50 -50	8	250 300	68 58	-14 -10	-50 -50	10 10	90 120	50 45	-18 -10
-50 -50	8	350 250	51 84	-7 -16	-50 -50	10 8	150 70	41 63	-7 -34
-50	6	300	72	-12	-50	8	90	58	-19
-50 -50	6	350 400	63 57	-9 -7	-50 -50	8 8	120	52 48	-11 -7
-50 -50	4	300 350	89 78	-11 -11	-50	6	70 90	71 65	-29 -19
-50	4	400	70	-8	-50	6	120	60	-11
-50	4	450	03	-/	-50	6	70	56 78	-6 -22
					-50 -50	4	90 120	73 67	-20 -12
					-50	4	150	62	-8

Table 7.3.8.Summary of depth intervals and porosities by lithofacies for fine- to medium-
crystalline sucrosic dolomites that exhibit water saturation change greater that 5% due to
FWL elevation change. Intervals and porosities not shown exhibit < 5% Sw change due
to elevation changes from -50 to +50 ft.

		Ноо	bler	Gra	skell	Flower*		
	Р	465	465	423	423	465	465	
	Z	0.92	0.92	0.92	0.92	0.92	0.92	
	Cgrv Perfs Reference	NA	NA	FWL+75	FWL+100	FWL+75	FWL+125	
	Sim Model FWL	+65	-35	+30	+5	+145	+95	
	Geomod 4-3 FWL	+20	+20	+44	+44	+142	+142	
		Shading ind	dicates mod	lel used in s	imulation ex	cercises.		
		OGIP	(BCF) by	Zone (F	ormation/	Member	level)	
	HRNGTN	4	5	4	4	10	10	
	KRIDER	29	31	13	13	47	46	
	ODELL	0	0	4	4	1	1	
ш	WINF	22	24	9	10	24	24	
AS	GAGE	2	3	9	10	8	9	
H	TWND	40	48	31	32	32	31	
Ŭ	B/TWND	3	5	3	3	2	2	
	FTRLY	24	42	64	65	32	31	
	MATFIELD	0	0	2	3	2	2	
	WREFORD	0	11	18	19	11	11	
	A1_SH	0	0	1	2	0	0	
	A1_LM	0	4	11	14	5	5	
	B1_SH	0	0	0	0	0	1	
ш	B1_LM	0	0	1	1	4	5	
2	B2_SH	0	0	0	0	0	0	
Я.	B2_LM	0	0	0	1	5	6	
Ľ	B3_SH	0	0	0	0	0	0	
Ş	B3_LM	0	0	0	0	1	1	
5	B4_SH	0	0	0	1	0	0	
S	B4_LM	0	0	0	0	1	2	
	B5_SH	0	0	0	0	0	0	
	B5_LM	0	0	0	0	4	8	
	C_SH	0	0	0	0	0	0	
	C_LM	0	0	0	0	0	2	
	Chase	124	169	155	161	169	167	
	Council Grove	0	4	14	20	20	30	
	Combined	124	173	169	181	189	197	
	% change Chase		36.3%		3.8%		-1 2%	
0/			#DIV//01**		1/ 10/		50.00/	
70			#DIV/U!""		44.4% 7 10/	50.0% 4 20/		
	% change complhed		39.5%		1.1%		4.2%	

* The two Flower models have more than one variable changing ** Hoobler has no gas in Council Grove or Wreford with higher FWL.

Table 7.3.9. Comparison of OGIP by zone in three multi-section simulation models as a function of the height above FWL. Relatively small changes in FWL dramatically affect zones lower in the section and very little in the very upper part of the Chase.

Figure 7.1.1. Model height above free water level curves for all 11 lithofacies for a $\phi i = 10\%$ rock. Water saturation can vary by up to 60% for the same porosity rock depending on the lithofacies. Curves were constructed using equations 4.2.15-4.2.19 in text. Differences in water saturation are greatest at lower heights and decrease with increasing height above free water level.

Figure 7.1.2. Model height above free water level curves for continental very fine to finegrained sandstones (L0) constructed using equations 4.2.15-4.2.19 in text.

Figure 7.2.1. Two views of the FWL surface model version Geomod4 with a contour interval = 50 ft. The FWL surface is relatively flat on the east side (+50 at the Hugoton boundary to +20 at the Panoma boundary). The surface rises gradually to the midfield position and then rises rapidly to approximately +1000 at the west margin of the Hugoton.

Figure 7.2.2. Height above FWL for key stratigraphic horizons in the Chase and Council Grove. Scale is from 0 to 500 ft (150 m) except for the B4_LM where the insert map covering Grant and Stevens Counties is 0-100 ft.

Figure 7.2.3. Elevation above sea level for base of Council Grove (Panoma) perforations, 2000 wells (left), and base of Chase (Hugoton) perforations, 4000 wells (right). Contour interval = 50 ft. Lowest perforations in the Council Grove at the Panoma margin approximately at sea level. In the Chase the perforations at the Hugoton margin are approximately 150-200 ft above sea level.

Figure 7.2.4 Average water saturation for Krider calculated from wireline logs using Archie for grain-supported lithofacies having porosity greater than 8% in color (purple is 100% Sw). Contour lines (50-ft interval) are the structure on the base of the Krider. Estimated FWL is 30 ft below coincidence of the base of Krider and 100% Sw.

Figure 7.2.5. Back-calculated FWL for eight wells in Texas County, Oklahoma, in feet above sea level.

Figure 7.2.6 Geomod 4-3 FWL resulting from the integration of three methods.

Figure 7.3.1. Crossplot of H_{afw} , S_w curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for all lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013.

Figure 7.3.2. Crossplot of H_{afw} , S_w curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for continental siltstone and sandstone lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013.

Figure 7.3.3. Crossplot of H_{afw} , S_w curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for marine siltstone and sandstone lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013.

Figure 7.3.4. Crossplot of H_{afw} , S_w curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for limestone lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013.

Figure 7.3.5. Crossplot of $H_{afwr}S_w$ curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for fine- to medium-crystalline sucrosic dolomite lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013.

Figure 7.3.6. Crossplot of H_{afw} , S_w curve parameter errors, $\log H_{te}$ error (threshold entry height parameter) versus, H_f error (dimensionless slope) for all lithofacies. Positive correlation between the two errors exhibits a reduced major axis line with slope=1.07 and intercept = 0.013. In the figure all samples in which the measured and predicted threshold entry height H_{te} is less than 50 ft were assigned an error of zero Because error in this range of threshold entry height is not significant.

Figure 7.3.7. Example H_{afw} , S_w curves for a packstone/grainstone with 16% porosity showing the range in curves produced by error in the parameters for creating the H_{afw} , S_w curve. Highest and lowest curves represent -2 and +2 standard deviations on the parameter errors. Approximate fraction of total population for each curve is shown. Fractions were used to weight predicted saturations to sum a probability-weighted predicted saturation that is compared against the baseline model in the tables 7.3.1-7.3.4.

Figure 7.3.8. Frequency distribution of difference in saturation between probabilityweighted saturations and baseline model saturations for selected porosity and height above free water level values shown in Tables 7.3.1-7.3.4 (n= 1,232).