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Statement of Problem

B Neced for a basic scientific framework to augment resource appraisal of gas shales 1n order to
place deposits 1n a global temporal and process framework.
o Provide means to leverage successes to other shales in other basins.

B No global high-resolution stratigraphic or biostratigraphic model exists for the Upper
Devonian to Lower Pennsylvanian succession.

B Complex mm- to dm- scale beds and bed sets of basinal, shale-dominated lithofacies have
been variably related to global and regional processes, but their correlation is 1ll-defined.

B Strategic, continuous reference sections that are resolved stratigraphically,
biostratigraphically, and geochemically in three dimensions are needed in Midcontinent basins to
establish the systematics of temporal variations 1n lithofacies from basin to shelf. This 1s critical
to establishing a sequence stratigraphic framework.

B Regional reference section must be tied to global stratotypes through chronostratigraphic
methods to develop a robust, process-based understanding of strata and to allow results to be
widely applicable to equivalent strata in other basins.

B The paleogeography for the Upper Devonian-Lower Pennsylvanian that defines the shelf- to-
basin transitions surrounding the Arkoma Basin 1s highly generalized. Vastly improved resolution
as needed to better assess resources and reconstruct the foreland basin framework and basement
structures that have actively influenced sedimentation and paleooceanographic conditions.

B Shelf-to-basin detrital and biogenic silica distribution is poorly understood; refined spatial
and temporal distribution 1s needed for these deposits that include the “Chat”™ or tripolite
(microporous spiculitic-skeletal packstone-grainstone) deposits that accumulated along the shelf
margin, and the gradation from non-siliceous to siliceous Woodford and the Arkansas Novaculite.

B [n general, rock properties need to be placed in this spatial-temporal framework in order to
optimize exploitation of associated remaining unconventional and conventional o1l and gas
resources.

B The role of global, regional, and local controls on the distribution of organic-rich, phosphatic,
and siliceous stratal successions needs to be determined before more refined global predictive
models on resource distribution can be realized.

B From a global perspective, boundary stratotypes are being sought for key intervals that are
being reexamined including Devonian-Carboniferous, Visean-Serpukhovian (Sand Branch, lower
Fayetteville and upper Barnett shales), Bashkirian-Moscovian (base of Atoka in Wapanucka).

B [n general, the biostratigraphy in the type areas of the U.S. 1s based on shallow-water small
forams and conodonts (e.g. Chesterian) and these species are different from those found in Russia
and cannot be easily correlated.

B Systematic conodont biostratigraphy of the major gas-producing shales, including
Fayetteville, Caney, and Barnett, is needed 1n conjunction with isotope chronology,
chemostratigraphy, and sequence stratigraphy to establish global reference sections.

Research Team Expertise

B Collaborative investigation between KGS-KU, OGS, OSU, and SUNY-Stony Brook.

B Core expertise of participants includes sedimentology & stratigraphy (Franseen, Watney, Puckett, Suneson,
Stalder), log petrophysical analysis (Doveton, Victorine), conodont biostratigraphy (Boardman, Thompson),
organic and trace metal geochemistry (Anna Cruse, OSU, Stillwater; Dave Newell, KGS), and isotope
geochronology (Troy Rasbury, Stony Brooke, NY).

B Insights from integrated approach would support strategic decision making toward development of
unconventional o1l and gas resources as well as address fundamental science questions.
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Transect Southwestern Arkoma Basin: Four continuous wireline cores

(Union Valley, Clarita, Wapanucka, Atoka) extending from Upper Devonian through Lower
Pennsylvanian age strata would be acquired along a transect traversing the southwestern edge of
the Arkoma Basin. Cores are located on three uplifted structural blocks on eastern flank of the
Arbuckle Mountains. The core transect, extending southward from Current #1 acquired in June
2008, will sample Woodford Shale at increasingly greater paleo-water depths into the Ouachita
foredeep. Strata represent a continuous succession of distal, deep basinal lithofacies of shales,
siltstone, and minor limestones. The relatively shallow depth of burial in these gently dipping
strata (3-7 degrees) will minimize diagenetic overprinting that affects conventional, more deeply
buried basinal cores taken in producing oil and gas locations.

Transect Northern Arkoma Basin and Northern Shelf

Margin: Eight cores are proposed along a transect that will extend from Muskogee,

Oklahoma, to Batesville, Arkansas. Fayetteville and Chattanooga would be cored in a location
where these shales merges into the Caney and Woodford shales, respectively. The Morrowan
strata reflect the shallow to distal shelf conditions from east to west (sand rich to carbonate rich to
basinal siliciclastics).

Two of the coreholes will be taken in Kansas providing additional control from 10 complete cores
of tripolitic chert shelf margin lithofacies taken from the Tri-State District and from sampling of
the Mississippian “Cowley Fm™ and the Kinderhook and Chattanooga Shales.

Southern flanks of the Ft. Worth Basin: Closest surface exposure to the
producing Barnett. Shallow cores that do exist are old unlogged (Houston Oi1l and Minerals).

Refined paleogeography and basin evolution sought in
coring program for Late Devonian-Lowermost
Pennsylvanian

Areas of focus: Arkoma foreland basin and adjoining shelf margin along upper
Midcontinent

Features addressed:

1) Prolonged, notable subsidence along Arkoma Basin foredeep, proto Anadarko Basin,

and sag basin near the Arbuckle aulacogen.

2) Prevailing basin anoxia in foreland due to deep water, high subsidence, low
sedimentation rate; restricted water circulation 1in narrow seaway in tropical setting;
elevated nutrient supply from possible upwelling and runoff from surrounding
landmass.

4) Prominent, active basement faults including wrench and related regional fault
systems that extend unto adjoining craton and influence sedimentation.

5) Later elevated thermal events related to burial with fluid flow along fault systems;
localized magmatic activity, e.g., associated with Reelfoot Rilft.

3) Basinal fluid migration from foreland basin to shelf leading to deposits of Pb-Zn
(MVT) and conventional oil and gas.

6) Tie to global processes.
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Coring Program

The core described 1n this poster, the OGS-KGS Current #1, 1s part of a shallow, near-surface coring
program that encompasses strategic sites targeting tripolitic chert shelf-margin lithofacies along the edges of the
Arkoma Basin and the basinal shales in the greater Arkoma and Ft. Worth Basins (see map upper right).
Intermediate slope locations are also included. Slimhole (3 1/2 inch) wireline coreholes are up to 2500 ft. in
depth, and logged with a full-suite of geophysical tools including spectral gamma ray, neutron, density, full-
waveform sonic, resistivity, sonic imaging, spectral neutron, and magnetic susceptibility. The Current #1
corehole lacks the latter tool due to unavailability.

Cores are slabbed, photographed, and described by team to determine lithofacies, texture, color, and
characteristics of bedding contacts, and establish preliminary sequence stratigraphy as reported in this poster.
Cores are sampled every half-ft to 1 ft for paleo and geochemical analysis. Additional samples are taken for
SEM and thin section study.

B Cores-log data provide the means to accomplish coordinated, precise sampling for a broad base of analytical
techniques.

B Half of core 1s archived to preserve record and for sampling at later time.

New Core Rig for KGS
— Longyear-LF90D Hydraulic Diamond Core Drill

e Depth capacity of 900 m (2950 ft) NQ/NRQHP

e Hydraulic rod making and breaking

¢ Independent dual hydraulic mast raising cylinders

e Hydraulic mast dumping capability up to 2340 mm (92 in)

e Hydraulic, telescopic, 6 m (20 ft) pull mast for ease of
setup with 16,000 Ib capacity mainline hoist

Opportunity for Industry Participation

B Coring program and analyses are currently dependent on industry participation to acquire
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cores, log, slab and analyze the core.

Climate Extremes, Stable Isotope, and Climate Proxies

* Global cooling during Late Devonian and episode of abrupt anoxic events.

* Onset of Glaciation and Periods of High-Amplitude, High-Frequency Changes in Sea Level.

Tools and Methodology Applied to Cores
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mechanical and seismic properties; and

11) share precisely sampled material for use by industry participants to conduct additional proprietary tests.
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Prelimi nary Observations of Provisional De POS itional Seq uences in the KGS-0GS Preliminary cyclostratigraphic analysis of the natural gamma ray log
for the the Current #1 using wavelet transforms
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Stratigraphic Interval Under Investigation
O Lack definitive correlations between shelf and basin.

00 Lack of correlations and understanding stratal geometries along the shelf margin impede
development of a robust sequence straugraphlc framework and related high-resolution

paleogeography and resource characterization.
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South Central Kansas Shelf Margin

Shelf margin example, Spivey-Grabs Field

and Tjaden #A-1 core

FROM PRIOR STUDY (WATNEY ET AL., 2001)
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« Early silicification and inter-
and post-Mississippian
subaerial exposure events
progressively altered chert
character, abundance, and
distribution

» Chat is vuggy, moldic,
autobrecciated pre-exisiting
chert (also called tripolitic chert
and cotton rock)

*Thick Chat deposits formed Location of Spivey-Grabs Field

alpng sybgropping cherty A,B basement Iinearﬁgrqt;nc?ndree%ﬁgég to pole magnetic field
Mississippian strata & Precambrian structure (white contours) (Kruger, 1997
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Findings of stratigraphic analysis along northern shelf margin bordering

the Arkoma Basin:

B Meter- to decimeter-scale depositional sequences including:

O Distal shelf margin T-R couplets of deeper-water dolomitic silty shale and carbonate lithofacies
with scattered benthics with nodular chert and organic macerals (“Cowley Fm), and no subaerial

exposure (typical of Upper Kinderhookian to lower to Mid-Osagean

O Unconformity-bounded, subaerially exposed depositional sequences dominated by tripolitic

chert
O  Total number of sequences >7.

B From southern Kansas bordering and southwestern Missouri bordering the Arkoma Basin,

basinward increase in tripolite and dolomitic limestone lithofacies characteristic of the shelf margin.

B  Conodont biostratigraphy indicates that chert is younger basinward and thus shelf margin is

progradational.

B The most basinward sequences consisting of chert most basinward are Upper Osagean and Lower

Meramecian in age.

B Basin-margin and slope lithofacies are probably represented by cherty dolomitic nodular chert and

organic maceral-rich “Cowley” lithofacies.

B Composite (multiple sequence) flooding surface appears to be the Late Kinderhookian Northview
Shale. (Major drowning of shelf and probably advent of deeper basinal shale lithofacies possibly

equivalent to the phosphorite that occurs in the Pre-Weldon Shale that overlies the Woodford Shale in

the Current #1 corehole.

B  Onlap/toplap? of microporous tripolite on east (landward) side of Tri-State MVT deposit (porosity
barrier) comparable to tripolite in south-central Kansas with lithofacies change before reaching pre-

Pennsylvaian subcrop.

B  Regional faulting during deposition appears to have influenced location of shelf margin and
distribution of tripolite; faults possibly provided conduits for ore fluids and hydrocarbon migration out

of the Arkoma Basin.

Convergence of Models for Hydrocarbon
and MVT Ore Formation
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Leach and Sangster (1993)

(1) pH change
(2) Cooling
(3) Dilution

(4) Increase in reduced sulphur
(A) by reducing SO,2- already in the brine
(i) internally (e.g., dissolved CH,)
(i) externally (e.g., petroleum encountered)

(B) by adding H,S to brine
(i) bacterial sulphate reduction
(ii) thermal degradation of petroleum
(iii) non-bacterial sulphate reduction by organic material
(iv) from pre-existing sulphate minerals

MVT deposits

Reasons for Deposition. (From Anderson, 1978).

ore solution must
bring both metal
and sulphide

ore solution

brings

only metal;
sulphide supplied

at site

Magnetics with regional lineaments — Kruger (1997)

Kinderhookian to lower Meramecian

Depositional sequences in tripolitic chert shelf margin lithofacies — northern shelf margin of
Arkoma Basin, southern Kansas and Tri-State region

e Tjaden core in Barber County, south central Kansas (below)

e Series of complete Devonian-Mississipppian coreholes in Cherokee County, adjoining Tri-State Pb-Zn deposits (cross section to right)
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Log-Core Description -
General Atlantic Tjaden A-1
T30S-R8W-Section 24

Kingman County, Kansas

Warsaw-0Osage-Kinderhook
Mississippian

Prominent oil and gas pay
in Snutn—l}emral Kansas

Derived from wireline log (LAS file) Derived from core
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Log-Core Description -
General Atlantic Tjaden A-1

T30S-R8W-Section 24
Barber County, Kansas

API: 15-095-21688

Spud Date: Jan-18-1994
Completion Date: Feb-26-1994
Plugging Date:

Well Type: INJ

Status: Well Drilled

Total Depth: 4500

GR = gamma ray, SP = spontaneous potential
CAL = caliper, PE = photoelectric curve

NPHI = neutron porosity, RHOB = bulk density
DPHI = density porosity

Well Data: TJADEN "4° 1 (15-095-21688) T: 305 R: 8W 5: 24
Latitude: 37.41889 Longitude: -98.14648 Flevation: 1614.0 Depih: 4500.0
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Tri-State Mining District '

Surface Geology and Structures in Eastern Kansas and Missouri
— Index Map for Cross Section

Surface structures on bedrock geologic map of Missouri and eastern Kansas. Many faults noted on
pre-Pennsylvanian surface exposures in Missouri some of which apparently were active during
deposition as evidenced by lithofacies pattern and thickness changes. .
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