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I. Introduction

In this report, derivations of the transform-space solutions to the mathematical model
describing the drawdown and stream depletion produced by a pumping well in a leaky
aquifer system are presented. The back transforms of these expressions are used by Butler
et al. [in review] to develop new insights into stream-aquifer interactions in a leaky aquifer
system.

In Section II of this report, governing equations and auxiliary conditions for a leaky
aquifer system hydraulically connected to a stream are presented. The corresponding
equations in Laplace-Fourier space are derived in Sections III and IV using standard inte-
gral transform methods. The general transform-space solution is presented in Section V.
In Sections VI and VII, simplified solutions for an unbounded domain and an unbounded
homogeneous domain, respectively, are presented. The derivation of a solution for the
stream-depletion rate is presented in Section VIII. The methods used to numerically
invert the transform-space solutions are described briefly in Section IX.
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II. Governing Equations

The problem of interest here is that of the drawdown and stream depletion produced by
pumping from a fully penetrating well in the leaky aquifer system of Figure 1. Following
the approach of Butler et al. [2001], vertical flow within the upper aquifer is neglected
(Dupuit assumptions). The stream and upper aquifer are separated by a zone of relatively
low hydraulic conductivity, which is represented mathematically as an incompressible layer
(Hantush [1965]). Portions of the upper aquifer underneath the stream are confined, but
can be confined or unconfined elsewhere. Flow in the aquitard is incorporated using the
model of Hantush [1960], which includes aquitard storage but neglects lateral flow. Similar
to Hantush and Jacob [1955], the underlying (lower) aquifer is assumed to be a unit of
relatively high permeability so that heads within that aquifer are unaffected by pumping
in the upper aquifer. Hydraulic properties are assumed to be a function of x, but can
be linearized into a series of zones of uniform properties that are arranged parallel to the
stream. Any number of zones can be considered in this derivation but three are used in
Butler et al. [in review].

Following the approach of Butler et al. [2001], governing equations and auxiliary con-
ditions can be defined for the leaky aquifer system of Fig. 1.

Aquifer Flow

∂2s(x, y, t)

∂x2
+

∂2s(x, y, t)

∂y2
− ksb

bsbT (x)
s(x, y, t) (H(x− xsl)−H(x− xsr))

− kc(x)

T (x)

∂sc(x, y, z, t)

∂z

∣∣∣∣∣
z=0

+
Q

T (x)
δ(x− xp)δ(y)

=
S(x)

T (x)

∂s(x, y, t)

∂t
xlb < x < xrb, −∞ < y <∞, t > 0 (1)

Note that Eq. (1) is a condensed but generalized form of Eq. (1)-(3) in Butler et al. [in
review].

Initial condition,

s(x, y, t = 0) = 0 (2)

Left boundary condition in x can be either constant head (Dirichlet condition),

s(x, y, t)

∣∣∣∣∣
x=xlb

= 0 (3)

or no flow (Neumann condition),

∂s(x, y, t)

∂x

∣∣∣∣∣
x=xlb

= 0 (4)
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Similarly, right boundary condition in x can be,

s(x, y, t)

∣∣∣∣∣
x=xrb

= 0 (5)

or

∂s(x, y, t)

∂x

∣∣∣∣∣
x=xrb

= 0 (6)

Drawdown at infinity in y is bounded,

s(x, y = −∞, t) <∞ (7)

s(x, y = ∞, t) <∞ (8)

A Cauchy boundary condition could also be readily incorporated into this develop-
ment. However, for large xlb and xrb, the solution is not sensitive to the form of the lateral
boundary conditions.

Aquitard

∂2sc(x, y, z, t)

∂z2
=

SSc(x)

kc(x)

∂sc(x, y, z, t)

∂t

xlb < x < xrb, −∞ < y <∞, −bc < z < 0, t > 0 (9)

Eq. (9) is equivalent to Eq. (4) in Butler et al. [in review].
Initial condition,

sc(x, y, z, t = 0) = 0 (10)

Continuity condition at interface of aquitard and upper aquifer,

sc(x, y, z = 0, t) = s(x, y, t) (11)

Constant head at base of aquitard,

sc(x, y, z = −bc, t) = 0 (12)

where
x, y = Cartesian coordinates in lateral plane. The origin of the x-axis can be any arbitrary
location (e.g., origin defined at right bank of stream in Butler et al. [in review]) and the
values increase from left to right. The origin of the y axis is at the pumping well and the
values increase upward, [L];
z = vertical distance from bottom of upper aquifer, [L];
t = time, [T ];
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s(x, y, t) = drawdown in the upper aquifer, [L];
T (x) = transmissivity of the upper aquifer, [L];
S(x) = specific yield or storativity of the upper aquifer, [1];
ksb = hydraulic conductivity of streambed, [L/T ];
bsb = streambed thickness, [L];
H(x− xsl) = Heaviside function (= 0 for x− xsl < 0, = 1 for x− xsl > 0), respectively;
xsl, xsr = left and right boundary of the stream, respectively [L];
sc(x, y, z, t) = drawdown in the aquitard, [L];
SSc(x) = specific storage of the aquitard, [L−1];
kc(x) = hydraulic conductivity of aquitard, [L/T ];
bc(x) = thickness of aquitard, [L];
xlb, xrb = left and right boundary of the aquifer, respectively, [L];
xp = x coordinate of pumping well, [L];
Q = pumping rate from well located at (xp, 0), [L3/T ].

A constant rate of pumping is assumed for this development. A variable rate of pump-
ing or a cyclic pumping strategy could be readily incorporated using standard convolution
approaches (Wallace et al. [1990])

Notation used in this report is the same as that used in the Mathematica package
developed for this project and may differ from that used in Butler et al. [in review] because
of the notation rules for Mathematica and the more generalized form of this development.
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Figure 1: Schematic (a) cross-sectional and (b) areal views of the stream-aquifer system
considered in this paper (notation explained in text; stream depletion in this configuration
consists of vertical leakage across the low-permeability streambed).
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III. Laplace Space Equations

Applying a Laplace transform in t to the equations of the previous section yields

∂2s(x, y)

∂x2
+

∂2s(x, y)

∂y2
− ksb

bsbT (x)
s(x, y) (H(x− xsl)−H(x− xsr))

− kc(x)

T (x)

∂sc(x, y, z)

∂z

∣∣∣∣∣
z=0

+
Q

pT (x)
δ(x− xp)δ(y)

= p
S(x)

T (x)
s(x, y) xlb < x < xrb, −∞ < y <∞ (13)

s(x, y)

∣∣∣∣∣
x=xlb

= 0 or
∂s(x, y)

∂x

∣∣∣∣∣
x=xlb

= 0 (14)

s(x, y)

∣∣∣∣∣
x=xrb

= 0 or
∂s(x, y)

∂x

∣∣∣∣∣
x=xrb

= 0 (15)

s(x, y = −∞) <∞ and s(x, y = ∞) <∞ (16)

∂2sc(x, y, z)

∂z2
= p

SSc(x)

kc(x)
sc(x, y, z)

xlb < x < xrb, −∞ < y <∞, −bc < z < 0 (17)

sc(x, y, z = 0) = s(x, y) (18)

sc(x, y, z = −bc) = 0 (19)

where s and sc are the Laplace transform of s and sc, respectively, and p is the Laplace
transform parameter. Note the overbar is used to indicate the dependence of s and sc on
p.

After applying the boundary conditions, the general solution for sc at any z and its
first derivative at z = 0 are, respectively,

sc(x, y, z) = cosh


√√√√SSc(x)p

kc(x)
z

 s(x, y)

+ coth


√√√√SSc(x)p

kc(x)

 sinh


√√√√SSc(x)p

kc(x)
z

 s(x, y) (20)

and
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∂sc(x, y, z)

∂z

∣∣∣∣∣
z=0

=

√√√√SSc(x)p

kc(x)
coth


√√√√SSc(x)p

kc(x)

 s(x, y) (21)

Substituting the above equation into equation (13) produces,

∂2s(x, y)

∂x2
+

∂2s(x, y)

∂y2
− ksb

bsbT (x)
[H(x− xsl)−H(x− xsr)] s(x, y)

− 1

T (x)

√√√√SSc(x)p

kc(x)
coth


√√√√SSc(x)p

kc(x)

 s(x, y) +
Q

pT (x)
δ(x− xp)δ(y)

= p
S(x)

T (x)
s(x, y) xlb < x < xrb, −∞ < y <∞ (22)
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IV. Fourier-Laplace Space Equations

Applying a Fourier transform with respect to y to (22) and (14)-(16) produces:

d2s̃(x)

dx2
− ω2s̃(x)− ksb

bsbT (x)
[H(x− xsl)−H(x− xsr)] s̃(x)

− 1

T (x)

√√√√SSc(x)p

kc(x)
coth


√√√√SSc(x)p

kc(x)

 s̃(x) +
Q√

2πpT (x)
δ(x− xp)

= p
S(x)

T (x)
s̃(x) xlb < x < xrb (23)

s̃(x)

∣∣∣∣∣
x=xlb

= 0 or
ds̃(x)

dx

∣∣∣∣∣
x=xlb

= 0 (24)

s̃(x)

∣∣∣∣∣
x=xrb

= 0 or
ds̃(x)

dx

∣∣∣∣∣
x=xrb

= 0 (25)

where s̃ is the Fourier-Laplace transform of s, and ω is the Fourier transform variable.
Note the double overbar is used to indicate the dependence of s on p and ω.

By defining,

β2 = ω2 +
ksb

bsbT (x)
[H(x− xsl)−H(x− xsr)]

+
1

T (x)

√√√√SSc(x)p

kc(x)
coth


√√√√SSc(x)p

kc(x)

 + p
S(x)

T (x)
(26)

The above equation is simplified to,

d2s̃(x)

dx2
− β2s̃(x) +

Q√
2πpT (x)

δ(x− xp) = 0 xlb < x < xrb (27)

The above equation is an ordinary differential equation (ODE) that is readily solved
in the following section.
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V. Transform-Space Solution

Dividing the aquifer into n zones of homogeneous properties in the x direction enables
Eq. (27) to be written for each zone i as

d2s̃i(x)

dx2
− β2

i s̃i(x) +
Q√

2πpT (x)
δ(x− xp) = 0 xi < x < xi+1, i = 1, ...n (28)

Because δ(x − xp) vanishes when x is not equal to xp, the general solution for the
above equation is,

s̃i(x) = c2i−1 sinh(βix) + c2i cosh(βix) xi < x < xi+1, i = 1, ...n (29)

for bounded zones or

s̃i(x) = c2i−1e
βix + c2ie

−βix x1 → −∞, xn+1 →∞ (30)

for unbounded zones. In all cases, the constant coefficients ci are determined from the
boundary conditions.

For external lateral boundary conditions, Eq. (24) and (25) are applied to x1 at the left
boundary and to xn+1 at the right boundary, respectively. For inter-boundary conditions
at xi (i = 2, ...n), integrating Eq. (28) with respect to x across narrow regions containing
xi (i = 2, ...n) reveals that s̃i(x) and its first derivative are continuous at all xi (i = 2, ...n)
except at xp (i = ip) where the first derivative has a discontinuity because of the singular
point at the pumping well. The boundary conditions can thus be written as,

Dirichlet : s̃i(xi)

Neumann : d̃si(x)
dx

∣∣∣∣∣
x=xi

 = 0, i = 1

(
s̃i(xi+1)− s̃i+1(xi+1)

)
= 0, i = 1, ..., n− 1

d
(
s̃i(x)− s̃i+1(x)

)
dx

∣∣∣∣∣
x=xi+1

=

{
Q√

2πpT (x)
, i = ip − 1

0, all other i = 1, ..., n− 1

Dirichlet : s̃i(xi+1)

Neumann : d̃si(x)
dx

∣∣∣∣∣
x=xi+1

 = 0, i = n (31)

Substituting Eq. (29) into Eq. (31) produces,
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Dirichlet : sinh(βixi)c2i−1 + cosh(βixi)c2i

Neumann : cosh(βixi)c2i−1 + sinh(βixi)c2i

}
= 0, i = 1

sinh(βixi+1)c2i−1 + cosh(βixi+1)c2i

− sinh(βi+1xi+1)c2i+1 − cosh(βi+1xi+1)c2i+2 = 0, i = 1, ..., n− 1

βi cosh(βixi+1)c2i−1 + βi sinh(βixi+1)c2i − βi+1 cosh(βi+1xi+1)c2i+1

− βi+1 sinh(βi+1xi+1)c2i+2 =

{
Q√

2πpT (x)
, i = ip − 1

0, all other i = 1, ..., n− 1

Dirichlet : sinh(βixi+1)c2i−1 + cosh(βixi+1)c2i

Neumann : cosh(βixi+1)c2i−1 + sinh(βixi+1)c2i

}
= 0, i = n (32)

By defining

sinh(βixj) = ai,j, cosh(βixj) = bi,j, ai,i = ai, bi,i = bi (33)

Eq. (32) can be rewritten in a 2n×2n matrix format, as shown in the following for which
the left boundary is a Dirichlet condition and the right boundary is a Neumann condition,



a1 b1

a1,2 b1,2 −a2 −b2

β1b1,2 β1a1,2 −β2b2 −β2a2

. . .
ai,i+1 bi,i+1 −ai+1 −bi+1

βibi,i+1 βiai,i+1 −βi+1bi+1 −βi+1ai+1

. . .
an−1,n bn−1,n −an −bn

βn−1bn−1,n βn−1an−1,n −βnbn −βnan

bn,n+1 an,n+1




c1

c2
...

c2i−1

c2i

c2i+1

c2i+2
...

c2n−1

c2n



=



0
...
0{

Q√
2πpT (x)

, i = ip − 1

0, all other i = 1, ..., n− 1
0
...
0



The expression for s̃i(x) can be obtained by solving the above linear equation for ci and substi-
tuting the solution into Eq. (29).
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For n = 4 zones with x = {x1, x2, x3, x4, x5} = {xlb, xsl, xsr, xp, xrb}, the above matrix
equation can be simplified to,



a1 b1

a1,2 b1,2 −a2 −b2

β1b1,2 β1a1,2 −β2b2 −β2a2

a2,3 b2,3 −a3 −b3

β2b2,3 β2a2,3 −β3b3 −β3a3

a3,4 b3,4 −a4 −b4

β3b3,4 β3a3,4 −β4b4 −β4a4

b4,5 a4,5





c1

c2

c3

c4

c5

c6

c7

c8



=



0
0
0
0
0
0
Q√

2πpT (x)

0



Expressions for ci and s̃i are very lengthy and not provided here for the sake of brevity. A
Mathematica notebook is available for interested readers. However, the expressions used for all
examples in Butler et al. [in review] are presented in the Section VII.
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VI. Transform-Space Solution for Unbounded Domain

For an unbounded domain in the x direction, xlb = −∞ and xrb = ∞, an approach similar
to that in Section V is adopted to derive the boundary conditions in which Eq. (30) is used for
the unbounded (far left and far right) zones.

c2i = 0, i = 1
eβixi+1c2i−1 − sinh(βi+1xi+1)c2i+1 − cosh(βi+1xi+1)c2i+2 = 0, i = 1
βie

βixi+1c2i−1 − βi+1 cosh(βi+1xi+1)c2i+1

− βi+1 sinh(βi+1xi+1)c2i+2 =

{
Q√

2πpT (x)
, i = ip − 1 = 1

0, i = 1 6= ip − 1
sinh(βixi+1)c2i−1 + cosh(βixi+1)c2i

− sinh(βi+1xi+1)c2i+1 − cosh(βi+1xi+1)c2i+2 = 0, i = 2, ..., n− 2
βi cosh(βixi+1)c2i−1 + βi sinh(βixi+1)c2i − βi+1 cosh(βi+1xi+1)c2i+1

− βi+1 sinh(βi+1xi+1)c2i+2 =

{
Q√

2πpT (x)
, i = ip − 1

0, all other i = 2, ..., n− 2

sinh(βixi+1)c2i−1 + cosh(βixi+1)c2i − e−βi+1xi+1c2i+2 = 0, i = n− 1
βi cosh(βixi+1)c2i−1 + βi sinh(βixi+1)c2i

− βi+1e
−βi+1xi+1c2i+2 =

{
Q√

2πpT (x)
, i = ip − 1 = n− 1

0, all other i = n− 1 6= ip − 1
c2i−1 = 0, i = n (34)

By applying Eq. (33) and redefining

eβ1x2 = a1,2 = b1,2 e−βnxn = an = bn (35)

Eq. (34) can be rewritten in a 2n × 2n matrix format, as shown in the following for which
left boundary is a Dirichlet condition and the right boundary is a Neumann condition,



0 1
a1,2 0 −a2 −b2

β1b1,2 0 −β2b2 −β2a2

. . .
ai,i+1 bi,i+1 −ai+1 −bi+1

βibi,i+1 βiai,i+1 −βi+1bi+1 −βi+1ai+1

. . .
an−1,n bn−1,n 0 −bn

βn−1bn−1,n βn−1an−1,n 0 −βnan

1 0





c1

c2
...

c2i−1

c2i

c2i+1

c2i+2
...

c2n−1

c2n


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=



0
...
0{

Q√
2πpT (x)

, i = ip − 1

0, all other i = 1, ..., n− 1
0
...
0


The expression for s̃i(x) can be obtained by solving the above linear equation for ci and substi-
tuting the solution into Eq. (29) or (30).

For n = 4 zones with x = {x1, x2, x3, x4, x5} = {xrl = −∞, xsl, xsr, xp, xrb = ∞}, the above
matrix equation is written as,



0 1
a1,2 0 −a2 −b2

β1b1,2 0 −β2b2 −β2a2

a2,3 b2,3 −a3 −b3

β2b2,3 β2a2,3 −β3b3 −β3a3

a3,4 b3,4 0 −b4

β3b3,4 β3a3,4 0 −β4a4

1 0





c1

c2

c3

c4

c5

c6

c7

c8


=



0
0
0
0
0
0
Q√

2πpT (x)

0



A Mathematica notebook is available for interested readers with expressions for ci and s̃i.
Expressions for the simple unbounded and homogeneous system used for all examples in Butler
et al. [in review] are presented in the next section.
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VII. Transform-Space Solution for Unbounded

Homogeneous Aquifer

For a homogeneous domain and the zone underneath the stream (xsl < x < xsr), Eq. (26)
can be simplified to

β2
s = ω2 +

ksb

bsbT
+

1
T

√
SScp

kc
coth

[√
SScp

kc

]
+ p

S

T
(36)

Outside that zone, the equation can be further simplified to

β2 = ω2 +
1
T

√
SScp

kc
coth

[√
SScp

kc

]
+ p

S

T
(37)

Given the homogeneous domain, the problem can be reduced to solving a group of linear
equations for four zones, the boundaries of which are defined by the pumping well and by the
two sides of the stream:

s̃(x) =



√
2
πQβse

−(xp−xsr+xsl−x)β−(xsr−xsl)βs 1
D , −∞ < x < xsl

1√
2π

Qe−(xp−xsr)β−(xsr+x−2xsl)βs

(e2(x−xsl)βs(β + βs)− (β − βs)) 1
D , xsl < x < xsr

− 1√
2π

Q 1
2β e−(xp+x)β−2xsrβs

((e2xβ + e2xsrβ)(e2xsrβs − e2xslβs)β2

2e2xβ(e2xsrβs + e2xslβs)ββs

(e2xβ − e2xsrβ)(e2xsrβs − e2xslβs)β2
s ) 1

D , xsr < x < xp

− 1√
2π

Q 1
2β e−(xp+x)β−2xsrβs

((e2xpβ + e2xsrβ)(e2xsrβs − e2xslβs)β2

2e2xpβ(e2xsrβs + e2xslβs)ββs

(e2xpβ − e2xsrβ)(e2xsrβs − e2xslβs)β2
s ) 1

D , xp < x <∞

(38)

in which

D = pT (e2(xsr−xsl)βs(β − βs)2 − (β + βs)2).

For the case of an impermeable formation underlying the shallow aquifer of Fig. 1, the
leakage (coth) term in Eq. (36) and (37) is negligible, resulting in:

β2
s = ω2 +

ksb

bsbT
+ p

S

T
(39)
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for the zone underneath the stream (xsl < x < xsr) and

β2 = ω2 + p
S

T
(40)

for all other zones. The solution is thus the same as Eq. (38) except for the definitions of β and
βs.

15



VIII. Transform-Space Solution for Stream

Depletion

The rate of stream depletion ∆q is defined as the total volumetric discharge across the
incompressible streambed at any given time (see Fig. 1 and caption). For the simplified scenario
of Fig. 1 and the previous section, ∆q can be expressed as:

∆q(t) =
ksb

bsb

∫ ∞
−∞

∫ xsr

xsl

ssdxdy (41)

in which ss is the drawdown beneath the stream.
Application of the Laplace transform to Eq. (41) and switching the x and y integrals yields:

∆q̄(p) =
ksb

bsb

∫ xsr

xsl

∫ ∞
−∞

s̄sdydx =
ksb

bsb

∫ xsr

xsl

˜̄ssdx (42)

in which ∆q̄(p) is the Laplace transform of ∆q and ˜̄ss is the Fourier-Laplace transform of ss for
ω = 0:

Substitution of Eq. (38) into Eq. (42) and performing the integration results in:

∆q̄(p) = − 1√
2π

Qe−(xp−xsr)β(exsrβs − exslβs)
1

Ds
(43)

in which

Ds = pT ((exsrβs + exslβs)ββs + (exsrβs − exslβs)β2
s ).

16



IX. Numerical Inversion of Laplace-Fourier Space

Solutions

The solutions in Laplace-Fourier space given in the previous sections are most readily eval-
uated using a numerical inversion scheme. A Mathematica Add-On package prepared by Mallet
[2000] is used for the joint Laplace-Fourier numerical inversion. This package provides five inver-
sion methods to invert Laplace transforms and joint Fourier/Hankel-Laplace transforms. The
inversion techniques are those of Durbin [1974], Stehfest [1970], Weeks [1966], Piessens [1971],
and Crump [1976]. The Stehfest [1970] algorithm, the most commonly used inversion algorithm
for well-hydraulics applications, is selected for the inversion of head responses and stream de-
pletion from Laplace space. The Fourier inversion uses the symbolic inverse Fourier transform
provided in Mathematica.
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