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Summary 
 
We analyze seismic data acquired on the Jakobshavn Glacier, 
Greenland for reflection surveys. With the use of the multi-
channel analysis of surface waves (MASW) seismic method 
Rayleigh-wave attenuation versus frequency curves were 
measured and inverted not only for shear-wave quality factor 
Qs but also for compressional-wave quality factor Qp, which 
was possible as a result of the favorable relationship between 
the compressional (P)-wave (Vp) and shear (S)-wave velocity 
(Vs), i.e.,Vp /Vs ratio <2.2 typical for ice sheets. Changes in 
the a-priori Vp model used for the inversion had little impact 
on the resulting Qs, but impacted the Qp results, while still 
preserving the overall Qp trend. This suggests that Qs can be 
estimated with higher degree of reliability even when Vp 
errors are assumed. As well, this research showed the benefits 
of the seismic method for studying glaciers, i.e., that a single 
seismic survey can provide 3 sets of parameters, Vp reflec-
tion results, Vs sections, and Qs and Qp sections.  
 
Introduction 
 
Seismic reflection data were recorded on Jakobshavn Glacier, 
Greenland (Horgan et al., 2008). Further analysis revealed 
that these data can be successfully used for shear S-wave 
velocity (Vs) estimations using surface-wave analysis. This 
research also showed that acquired data and obtained results 
can be also used for Rayleigh-wave analysis for evaluating 
quality factors Q. We focus on multichannel analysis of sur-
face waves (MASW) approach, which was initially used in 
previous research to evaluate ice-sheet Vs (Ivanov et al., 
2009) to obtain quality factor Q estimates. 
 
Stiffness properties of near-surface materials are important 
for various environmental and engineering applications. Stiff-
ness is directly related to Vs, which increases as material 
shear strength (stiffness, rigidity) increases. Vs can be esti-
mated by analyzing surface waves on seismic data records. 
We use the MASW method to estimate near-surface shear-
wave velocity from high-frequency (≥ 2 Hz) Rayleigh-wave 
data (Song et al., 1989; Park et al., 1998; Miller et al., 1999b; 
Xia et al., 1999). Shear-wave velocities estimated using 
MASW have been reliably and consistently correlated with 
drill data. Using the MASW method, (Xia et al., 2000) non-
invasively measured Vs within 15% of Vs measured in wells. 
(Miller et al., 1999b) mapped bedrock with 0.3-m (1-ft) 
accuracy at depths of about 4.5-9 m (15-30 ft), as confirmed 
by numerous borings.  

The MASW method has been applied to problems such as 
characterization of pavements (Ryden et al., 2004), the study 
of Poisson’s ratio (Ivanov et al., 2000a), study of levees and 
subgrade (Ivanov et al., 2004; Ivanov et al., 2006b), investi-
gation of sea-bottom sediment stiffness (Ivanov et al., 2000b; 
Kaufmann et al., 2005; Park et al., 2005), mapping of fault 
zones (Ivanov et al., 2006a), study of Arctic ice sheets 
(Tsoflias et al., 2008; Ivanov et al., 2009), detection of dis-
solution features (Miller et al., 1999a), and measurement of 
Vs as a function of depth (Xia  et al., 1999). Applications of 
the MASW method have been extended to determination of 
near-surface quality factor Q (Xia et al., 2013) and the acqui-
sition of more realistic compressional-wave refraction models 
(Ivanov et al., 2006c; Ivanov et al., 2010; Piatti et al., 2013). 
A review of established approaches of surface wave methods 
(SWM) can be found in Socco et al. (2010). Most recent de-
velopments of the SWM include the expansion with the use 
of the horizontal component of the Rayleigh wave (Boaga  
et al., 2013), the simultaneous use of guided-waves with 
multi-mode surface waves in land and shallow marine 
environments (Boiero et al., 2013) and evaluation at landfill 
sites (Suto, 2013). 
 
Shear-wave quality factor, Qs, (dissipation factor Qs-1, a.k.a. 
intrinsic attenuation) and conditionally compressional-wave 
quality factor, Qp (dissipation factor Qp-1), can be estimated 
from the MASW seismic data. Rayleigh-wave attenuation-
frequency curves can be measured (Xia et al., 2012; Xia  
et al., 2013) and then using estimated MASW Vs with avail-
able compressional P-wave (Vp) and density information 
numerical relationship between these variables can be applied 
Anderson et al. (1965).  
 
αR(𝑓) = 𝜋𝑓

𝐶𝑅2(𝑓)
�� Pi(f)QPi

−1]𝑛
𝑖=1 + � Si(f)QSi

−1𝑛
𝑖=1 � (1) 

 
Where Pi(f) = VPi

∂CR(f)
∂VPi

,Si(f) = VSi
∂CR(f)
∂VSi

. αR(𝑓) is the Rayleigh-
wave attenuation coefficient in 1/length, f is frequency in Hz, 
QPi and QSi are the quality factors for P and S waves of the ith 
layer, VPi and VSi are the P- and S-wave velocities of the ith 
layer. The suggested inversion system is sensitive to Qp only 
when Vp / Vs ratio is smaller than 2.2, (i.e., Vs/Vp>0.45) 
(Xia et al., 2002). Attenuation versus frequency curves. can 
by estimated in the frequency domain by measuring ampli-
tude attenuation trend at a given frequency across a whole 
record (Xia et al., 2012). 
 
The MASW method is applied by performing the following 
steps. A single seismic-data record is acquired. These data are 
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Near-surface MASW Qs and Qp 

transformed into a dispersion-curve image (Park et al., 1998; 
Luo et al., 2009), which is used to evaluate a dispersion-curve 
trend(s) of the Rayleigh wave. This curve is then inverted to 
produce a 1D Vs model (Xia et al., 1999). By assembling 
numerous 1D Vs models, derived from consecutive seismic 
shot records, 2D (Miller et al., 1999b) or 3D (Miller et al., 
2003) Vs models can be obtained.  
 
Inverting attenuation values for Qs in addition to Vs requires 
Vp and density information, which are assumed to be avail-
able from other geophysical methods, such as seismic reflec-
tion (Steeples and Miller, 1990), refraction tomography 
(Zhang and Toksoz, 1998; Ivanov et al., 2010) for Vp, well 
measurements, etc. Practical applications of MASW method 
Vp and density are rarely known with confidence and as a 
result use of approximations is adopted, which is commonly 
considered acceptable because of the low sensitivity of 
surface-wave inversion to Vp and density, i.e., errors in their 
estimation result in very small errors in final Vs results (Xia 
et al., 1999). When applied to near-surface seismic data Vp / 
Vs ratios are rarely below 2.2 or even known. In such cases, 
when solving for quality factors (Xia et al., 2012) the approxi-
mation Qp = 2 Qs is assumed.  
 
However, availability of Vp , especially if the corresponding 
Vp / Vs ratio approaches 2.2 or less makes it possible to in-
vert for Qp in addition to Qs. That is one of the reason for our 
special interest in ice-sheet data because the reported Vp / Vs 
ratio for ice can equal 2 (Waite et al., 1995). 
 
Data Acquisition 
 
A 2-D seismic line was acquired at Jakobshavn Glacier, 
Greenland (69.35° N, 47.2° W), using a 0.5 charge at 10 m 
depth as a source. The recever spread consisted of twenty-
four 28 Hz vertical phones spaced at 20 m, resulting in a  
460 m spread. Data were collected using a roll-along style  
of acquisition. The spread movement (roll) was 160 m 
(Horgan et al., 2008). 
 
Results 
 
The MASW technique was appraisedby evaluating the ability 
of the method to estimate the dispersion curve of the funda-
mental mode of the Rayleigh wave. The phase-velocity – 
frequency image of data showed a high-resolution funda-
mental-mode dispersion-curve trend within a frequency 
range, 10-50 Hz (Figure 1) which could typically be followed 
to ~110 Hz. With phase velocities ~1600-1700 m/s at ~10 Hz 
resulted in longest wavelengths of ~160-170 m that contrib-
uted to estimating Vs to a depth of~80 m. A 2-D Vs section 
was obtained (Figure 2) with the MASW inversion using a 
Vp model (Figure 3) estimated from a refraction survey in the 
Antarctic (King and Jarvis, 2007) and density information 
(Figure 4) from a near-by well. The resultant Vp / Vs ratio 
was less than 2.2 for the most part of the section (Figure 5).

A set of 18 records was selected to estimate attenuation 
curves from each record and invert these data for Qs and Qp 
using the available Vs, Vp and density models. For half of 
the records the estimated attenuation curves followed close-
to-linear trends. For the most of the frequency range (e.g., 20-
65 Hz) these curves were matched very well by the curves 
calculated from the inversion (Figure 6). For a short fre-
quency range (e.g., 10-15 Hz) the curve match was reduced 
but was considered still acceptable following previous re-
search (Xia et al., 2002; Xia et al., 2012). 
 

 
Figure 1. Dispersion-curve images of MASW seismic data acquired 
at Jakobshavn Glacier, Greenland. 
 

 
Figure 2. Portion of the 2-D MASW Vs section. Also used as a Vp 
model with values Vp = 2Vs. 
 
For half of the records the attenuation curves appeared irregu-
lar (Figure 7), possibly due to noise, and the Q inversion 
failed to provide a good match between the calculated and 
estimated curves. These results were not included. 

The inverted Qs model (Figure 8) had relatively high values 
at the very top ~5 m and relatively low Qs for the most of the 
remaining part of the section (below ~12 m), which implies 
low shear-wave dissipation at the very top and high dissipa-
tion below. The corresponding Qp section (Figure 9) exhib-
ited different trends. There was a relatively high-Qp layer at 
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Near-surface MASW Qs and Qp 

25 m separated by a low-Qp layer at 40 m with two high-Qp 
dome-shaped anomalies below 45 m.  

 
Figure 3. Vp estimated from refraction survey in the Antarctic. 
 

 
Figure 4. Density information from a near-by well. 

 
Figure 5. Vp/Vs ratio after inverting for Vs. 

To evaluate the impact of the Vp model on the Q inversion. 
we used a significantly different model using Vp = 2 Vs from 
MASW (Figure 2; the Vp model would appear identical with 
values twice bigger) based on Waite et al. (1995). The in-
verted Qs model (Figure 10) remained almost identical to the 

previous with the exception of the increased values of the two 
previously existing bull-eyes anomalies at about 60 m depth. 
Qp results changed. The low-Qp layer at 40 m disappeared 
and the dome-shaped features expanded in width and height 
(Figure 11). However, both Qp results suggest low dissipa-
tion factor (Qp-1) with depth (high Qp) and high dissipation 
factor very shallow (low Qp). These relatively high Qp 
values below ~35 m depth range between 80-100 are 
consistent with previous glacier research estimates (e.g., 50-
160; by using frequencies above 100 Hz) summarized by 
Gusmeroli et al. (2010). With that respect our estimates may 
appear a bit lower than the average. 
 

 
Figure 6. Attenuation curves estimated from the data (blue stars) and 
calculated (red squares) from the inverted Qs and Qp models.  
 

 
Figure 7. Estimated attenuation curve with irregular trend. 
 
We presented two Vp models (one from well data, and 
another from lab measurements. Considering the wide 
possible range of refraction nonuniqueness, more Vp models 
can be obtained using algorithms, such as, GRM (Palmer, 
1981), refraction tomography (Zhang and Toksoz, 1998), 
JARS (Ivanov et al., 2010), etc. for potentially detailed Qp 
results (e.g., Figure 9). 
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Near-surface MASW Qs and Qp 

 
Figure 8. Qs estimates using MASW Vs and refraction Vp. 
 

 
Figure 9. Qp estimates using MASW Vs and refraction Vp. 
 

 
Figure 10. Qs estimates using MASW Vs and Vp=2Vs. 
 
This research showed that using the significantly different Vp 
models resulted in different Qp; however, the overall Qp 
trend is preserved. As well, Qs is largely unaffected by 
changes in the Vp model. 
 
High Qs and Qp (lower dissipation factors Qs-1 and Qp-1) 
with depth are consistent with our expectations of glacier 
changes with depth.  

 
Figure 11. Qp estimates using MASW Vs and Vp=2Vs. 
 
Conclusions 
 
This work shows that in addition to estimating quality factor 
Qs from Rayleigh wave attenuation coefficients, it is also 
possible to obtain from these same data Qp estimates that 
look different from the Qs trends (i.e., they were not a scaled 
version of Qs). This was possible only by using Vp models 
that provide Vp/Vs ratio < 2.2. 
 
To the best of our knowledge our work is a unique attempt to 
estimate Qp from Rayleigh-wave attenuation coefficients for 
the very near-surface (i.e., 10-80 m), for which Vp/Vs ratio 
are < 2.2. We speculate that this may be due to the fact that at 
great majority of the very near-surface sites Vp/Vs > 2. 
 
Future research can include the estimation of more accurate 
Vp models for this site using other geophysical methods, 
such as refractions, tomography, well measurements, etc. 
 
We demonstrate that the seismic method can provide more 
than one physical attribute for observing status and processes 
taking place in a glacier. In this instance a single seismic sur-
vey for reflection purposes could also be used for the estima-
tion of 2-D MASW Vs, Qs, and Qp sections. 
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