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Summary 

 

Synthetic seismograms and multi-channel analysis of surface 

waves (MASW) enhance interpretations of a field site’s 

velocity characteristics. MASW layer models were 

numerically modeled to produce synthetic shot gathers. 

Iteratively updating the P- and S-wave synthetic velocity 

models created shot gathers with first-arrivals and Rayleigh-

wave dispersion that closely matched field data. The resulting 

velocity models gave an estimation of the Vp:Vs ratio. 

Dispersion images generated from synthetic shot-gather 

subsets linked acquisition parameters to modal phenomena 

observed in initial processing of field data. Similar 

comparisons gave qualitative estimations of phase-velocity 

averaging over the spread-length for specific frequency 

bands. We suggest integrating modeling, using MASW Vs 

interval velocities, to differentiate between true velocity 

structure and transformation artifacts.  

  

Introduction 

 

Rayleigh wave dispersion is used to estimate the S-wave 

structure of the subsurface. Engineering and environmental 

applications use the ability of surface waves to map rigidity 

as a function of lateral and vertical heterogeneities in shear-

wave velocity (Socco et al., 2010). By their physical nature, 

Rayleigh waves propagate as the interference of P- and S-

waves along the free surface. Investigation depth is a function 

of frequency and attenuation. Moreover, since velocity varies 

with depth, dispersion results as various frequencies travel 

within different velocity horizons of the subsurface. The 

phase velocities of individual layers result in surface-wave 

dispersion as seen on shot gathers. We use multi-channel 

analysis of surface waves (MASW) for S-wave velocity 

estimations (Miller et al., 1999). 

 

Surface-wave investigations have included: depth to bedrock 

(Miller et al., 1999), comparison with refraction microtremor 

analysis (Anderson et al., 2007; Richwalski et al., 2007; 

Stephenson et al., 2005), hydrophone acquisition (Kaufmann 

et al., 2005), pavement characterization (Ryden et al., 2004), 

and time-lapse study of levees (Ivanov et al., 2005; Ivanov et 

al., 2006). Others have studied the incorporation of higher-

modes within inversion (Luo et al., 2007; Maraschini et al., 

2010; Xia et al., 2003) and dispersion imaging (Dal Moro et 

al., 2003; Duputel et al., 2010; Luo et al., 2008). 

 

There are three parts in the MASW method: acquisition, 

dispersion-curve processing, and inversion. Acquisition 

techniques include both passive and active approaches. 

Passive often generates lower-frequency energy that may be 

complimentary to active data (Louie, 2001; Park et al., 2007; 

Strobbia and Cassiani, 2011). A standard approach to active 

data uses off-end shooting to create common-source gathers. 

The use of low-frequency (<10 Hz) geophones improves 

broadband sampling of Rayleigh-wave dispersion (Ivanov et 

al., 2008). Field records are transformed to the phase-velocity 

vs. frequency domain using the phase shift method (Park et 

al., 1998). Dispersion overtone images, as a function of 

phase-velocity and frequency, are interpreted for the modal 

curve(s). Some methods solve for an ‘effective or apparent’ 

curve (Gucunski and Woods, 1992) which eliminates the 

need to designate distinct modes (Rix and Lai, 1998; Socco et 

al., 2002). Depending upon the survey technique optimizing 

the source-offset and spread-length window for dispersion-

curve clarity may be an iterative process (Ivanov et al., 2008; 

Socco et al., 2009). These curvilinear events are then inverted 

to form a series of 1D S-wave velocity profiles assigned to 

the original x-t domain midpoint (Xia et al., 1999). 

Sequential 1D velocity profiles are then joined into a pseudo-

2D profile through interpolation. 

 

Sensitivity testing has included method resolution (Boiero 

and Socco, 2010; O’Neill et al., 2008; Xia et al., 2005; Xia et 

al., 2007) and repeatability (Cornou et al., 2006; Beaty and 

Schmitt, 2003). Complicated Vs structures introduce 

significant subjectivity in dispersion interpretations. Velocity 

inversions and/or high stiffness contrasts create an increased 

risk of invalid dispersion characterization and resulting 

inverted Vs profiles. Conversely, such complications may be 

adequately constrained with a priori knowledge. Well-posed 

inversion problems have proven reliable and repeatable for a 

wide range of simplistic and complicated Vs geometries. 

 

Conventional MASW assumes forward-propagating plane 

surface waves dominate the shot gather. The inclusion and 

mixing of coherent noise is generally ignored due to the 

lower attenuation and higher relative amplitudes of ground 

roll. The optimum offset distance for proper formation and 

processing of Rayleigh waves is often determined during 

acquisition. Rules of thumb have been developed, but are 

routinely disputed with actual field application (Xia et al., 

2009; Xu et al., 2006; Zhang et al., 2004). 

 

Imperfect spread parameters may produce images with poor 

resolution of modes (Foti et al., 2002), higher-mode 

domination (Cercato et al., 2010; Cornou et al., 2006), near-

field non-plane-wave interference (Park et al., 1999), or poor 
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Synthetic Modeling and MASW 

sampling of longer wavelengths (Ivanov et al., 2008). Higher-

mode dominance is often attributed to high stiffness contrasts 

and inversely dispersive media (Forbriger, 2003; O’Neill and 

Matsuoka, 2005; Socco et al., 2002; Tokimatsu et al., 1992). 

The employment of an apparent dispersion curve, which 

incorporates superposition of modes, is still vulnerable to 

inadequate dispersion imaging. Apparent-curve inversion is 

insufficiently constrained, as opposed to global-search 

methods, using the more efficient iterative least-squares 

method. Inversion schemes ultimately rely on ‘perfect’ 

imaging of dispersion characteristics. Without rigorous 

testing, or a priori knowledge, a balance between imaging 

lateral heterogeneity with shorter spreads and adequately 

sampling longer wavelengths with relatively longer spreads is 

not intuitive.  

 

We used the algorithm discussed by Zeng et al. (2011) to 

create synthetic seismograms that closely match both P-wave 

first-arrivals and Rayleigh-wave dispersion characteristics of 

a site located near Yuma, Arizona. The resulting synthetic S- 

and P-wave velocity models permitted an inference of the 

site’s Vp/Vs ratio. Spread-length comparison lead to 

qualitative estimations of lateral heterogeneity and the effects 

of acquisition parameters on specific frequency segments of 

dispersion images. Here we suggest the use of modeling to 

constrain and improve interpretation of Rayleigh-wave 

dispersion in the presence of complex velocity structures at 

future sites. 

 

Method 

 

Schwenk et al. (2012) used MASW and SH-wave refraction 

traveltime tomography to constrain each method’s starting 

layer-model at our site near Yuma, Arizona. By using the 

refraction Vs tomogram as a priori constraint, along with 

density and bedrock depth values from well logs, more layers 

could be included in an updated layer model for inversion. 

Such treatment allowed for a higher-resolution MASW Vs 

profile while limiting resolution and over-parameterization 

uncertainties for the MASW section. These findings 

formulated a characteristic MASW Vs model for the site, 

which formed the basis of synthetic seismic modeling. 

 

Continuing this research, numerical modeling sought to 

increase the confidence in the dispersion interpretations for 

the site. The modeling algorithm took density, Vp, and Vs 

model inputs to generate synthetic shot gathers. The resulting 

synthetic P-wave first arrivals were compared to several field 

gathers and resulted in a RMS error of approximately 9ms. 

Corresponding iterative updates of the Vs models lead to a 

convergence of the synthetic and field phase-velocity curves 

of the fundamental and first-higher modes. The Vp:Vs ratio of 

the synthetic velocity models was 1.7, reaffirming previous 

values from independent Vp/Vs tomography and MASW 

surveys.  

Results 

 

Below is a 2D plot of the 11-layer half-space model used to 

generate the synthetic seismogram. The source wavelet was a 

35Hz center-frequency first-order Gaussian derivative. 

Simulating the field layout, the source offset was 1.2m from 

the first geophone with a 1.2m geophone spacing. The 

common-source gather consisted of 147 geophones. The full-

spread seismogram, generated using the above parameters, 

was used for further processing; a characteristic field gather 

is also presented (Figure 1).  

 

Full spread images closely match theoretical curves 

calculated by Schwab and Knopoff (1972). Reductions in 

spread length resulted in a separation of apparent phase-

velocity at 10 Hz for both field and synthetic data sets (Figure 

2). This separation is not a function of lateral heterogeneity. 

Analysis of modeled dispersion images confirms that direct 

higher-mode interference and superposition is negligible. The 

velocity pull-down is attributed to spectral leakage and 

smearing within the frequency domain, resulting in a loss of 

resolution. 

 

 

Vs (m/s) 

Figure1: (Upper) Characteristic velocity model for the YPG site. 

(Lower) Corresponding synthetic seismogram at right and field shot 

gather at left with identical acquisition geometries. The optimized 

65-geophone spread is left of the vertical lines.
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Synthetic Modeling and MASW 

 

Figure 2:  Graph of phase-velocity variation with spread length. All subsets have a 1 m source offset, where short refers to a 78m 65-geophone 

spread and long refers to a 178m 147-geophone spread. At maximum deviation, percent difference is under 6% for corresponding 

spread lengths. The slight overestimation at high-frequencies is a result of the automatic picking routine.  

 

The slight separation above 25 Hz, observed in field data, is 

inferred as spread-length averaging induced by lateral 

heterogeneity. These frequency-dependent effects of the 

domain transformation were associated with an optimized 

spread length. The 65-geophone gather was obtained from a 

systematic sampling of field data resulting in an optimal 

spread-length and source-offset subset which balanced 

image and lateral-velocity resolution. 

 

Longer source-offsets resulted in mode superposition and 

higher-mode velocity pull-ups of the fundamental in the 

same frequency-band that was affected by spectral leakage 

(Figure 3). Field data suffered more than modeled data from 

these effects; this is believed to be due to attenuation effects 

and additive coherent signal from local heterogeneity not 

incorporated into the synthetic Vs model. The combined 

effect produced a zigzag phase-velocity trend that was the 

most compelling evidence for using closer source-offsets 

within the optimized spread-length. 

 

Modeling increased confidence in modal designation and 

final Vs sections by confirming a small difference between 

the calculated theoretical curves and fundamental-mode 

interpretation. This research reiterates that a coupling of 

closer offsets and long spread-lengths may be necessary to 

properly image some inversely dispersive Vs structures 

(Ivanov et al., 2011). Although using close offsets is 

counter-intuitive to sampling longer wavelengths, when 

considering the model data, the short-offset optimized 

spread resulted in a 6% maximum underestimation of Vs and 

a preservation of the modal sinuosity with enhanced lateral 

resolution.  

 

 

 

Figure 3:  Three acquisition subsets are illustrated; all are synthetic except the bottom-right image which is field data. Note the velocity misinter-

pretation around 10 Hz and increased higher-mode energy. Vertical normalization highlights the curves’ maximum-amplitude center.
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Synthetic Modeling and MASW 

The field data was affected by attenuation, resulting in 

incoherent and discontinuous fundamental-mode signatures 

below a 200-800 ms sloping ‘timeline’. Conversely, the 

elastic-modeling algorithm didn’t incorporate attenuation 

analysis into wave propagation. This discrepancy between 

the synthetic and field data was approximated with muting 

(Ivanov et al., 2005). A long-taper bottom mute was 

applied to both data along this slope to introduce 

attenuation. The field data showed little change in the 

dispersion image, while the modeled image saw a drop in 

the high-frequency amplitudes of the fundamental (Figure 

4). Muting on synthetic gathers enhanced the cut-off 

frequency around 30 Hz past which the fundamental-mode 

became over-estimated and the true trend was obscured in 

field data. This suggests that attenuation and near-field 

near-surface scattering of the fundamental-mode Rayleigh 

wave may intensify the affects of higher-mode excitement 

and hamper dispersion interpretation after domain 

transformation. 

 

Conclusion 

 

Complicated Vs structures introduce some speculation 

when interpreting dispersion images. Selecting optimal 

acquisition parameters may be seriously under-constrained 

without ample site analysis. For our inversely dispersive 

model, analysis of the processed waveform was negatively 

affected by loss of resolution and the finite windowing of 

the x-t domain; which agrees with previous research. 

Comparison of low-frequency synthetic data with 

complimentary field gathers verified that the modal 

responses of certain data were an effect of wavelength 

sampling and domain transformation rather than local 

heterogeneity, as appeared to be the case independently. 

Understanding how modal curves were affected by spatial 

sampling and acquisition parameters increased confidence 

in the optimal spread length and dispersion interpretations 

used in preliminary MASW investigations.  

 

Classical research suggests a proper source offset is equal 

to the maximum depth of investigation (half the longest 

wavelength); in this case, approximately 40m. This rule of 

thumb caused erroneous modal trends and a 10% maximum 

overestimation of phase velocity. Non-optimal spreads 

were shown to add or increase the severity of modal 

inflection points, which could introduce inversion 

instability. On the other hand, a short offset resulted in a 

more sinuous curve that underestimated velocities by 

approximately 6%. These outcomes suggest that shorter 

offsets, together with longer spread lengths, may be 

preferable to improve sampling of long wavelengths.  

 

If dispersion interpretation would ignore zig-zag patterns 

and introduce some smoothing constraint on modal 

sinuosity, one might minimize the effects of imperfect 

 
Figure 4: (Upper) Field data with bottom mute from 125 ms to 

375 ms with a 78m spread and 1.2 m source offset; (Lower) same 

mute and acquisition parameters applied to the synthetic record. 

The field data showed little change with muting as signal energy 

was already attenuated. 

 

acquisition parameter sets. For new sites, however, past 

experience and best-guess interpretation is often what 

geoscientists must rely on for preliminary interpretations. 

Data-driven methodologies are always preferable and 

adding synthetic modeling to compliment MASW 

investigations may give greater insight into modal trends 

and their interpretation for future surveys. 
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