Skip Navigation

Jefferson County Geohydrology

Prev Page--Hydrology || Next Page--Ground-water Summary


Chemical Quality of Water

Chemical analyses of water from selected wells in Jefferson County (table 2) indicate that most of the water is of the calcium bicarbonate type. The concentration of dissolved solids in water samples from wells provides a general means of evaluating the quality of water in various aquifers. The concentration of dissolved solids ranges from 125 to 1,190 mg/l (milligrams per liter), with most values ranging from 300 to 600 mg/l. Water is considered to be of good quality for public supply if the dissolved-solids concentration is less than 500 mg/l, and of acceptable quality if the concentration is less than 1,000 mg/l. (The limits of the various constituents cited are those recommended by the U.S. Public Health Service, 1962.) Sulfate concentrations were generally low for most of the samples analyzed; however, two of the samples contained concentrations of sulfate in excess of the 250 mg/l limit recommended for public water supplies. The water generally is very hard, but it can be softened if found objectionably so.

Table 2--Chemical analyses of water from selected wells and test holes. (1) [Dissolved constituents and hardness given in milligrams per liter.]

Well number Depth (feet) Geologic source Date of collection Temperature (deg. C) Dissolved solids
(evaporated at
180 deg. C)
Silica
(SiO2)
Total
iron (Fe)
Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium and
potassium
(Na + K)
Bicarbonate (HCO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (2) (NO3) Hardness as CaCO3 Specific conductance
(micromhos at 25 deg. C)
pH
Total Noncarbonate
7-16E-25ddd 28 Auburn Shale, Bern Limestone 7/11/67 18 941 16 0.22 0 210 27 64 386 86 140 0.1 200 640 330 1520 7.5
7-17E-33ddd 20 Terrace deposits 7/10/67 17 1040 15 0.74 0 210 21 75 312 19 110 0.1 430 620 360 1580 7.3
7-18E-25bba 102 Glacial drift 4/14/67 13 499 24 0.28 0.24 96 24 51 400 73 28 0.7 6.2 340 10 810 7.6
27cdc 60 Glacial drift 6/30/67 18 476 22 0.01 0 100 20 40 386 19 28 0.1 56 330 18 790 7.4
30bbc 30 Glacial drift 4/14/67 13 290 16 0.53 0 77 7.8 16 246 16 5 0.2 31 220 22 470 7.4
7-19E-29bba 162 Glacial drift 5/20/66   501 27 0.68 0.22 100 30 39 427 40 40 0.2 10 390 36 860 7.7
31aaa 138 Glacial drift 8/14/67   446 23 0.566 0.18 62 22 82 449 14 20 0.5 0.9 240 0 720 7.6
7-20E-31ddc 60 Glacial drift 4/11/67 16 381 23 0.05 0 88 21 20 371 12 8 0.4 27 310 2 620 7.5
8-16E-12bcd 62 Alluvium 7/11/67 18 603 19 9.8 0.86 100 35 83 608 16 48 0.1 0.9 400 0 1010 7.4
8-17E- 9aaa 50 Terrace deposits 4/14/67 16 1190 15 0.53 0 180 35 140 373 150 120 0.1 350 600 290 1770 7.2
15dca 48 Scranton Shale, Howard Limestone 7/10/67 16 815 11 0.11 0 160 27 67 283 290 34 0.1 93 500 270 1110 7.6
19dcb 80 Alluvium 4/14/67 13 809 9 0.03 0.4 160 22 79 381 87 57 0.1 210 480 170 1260 7.4
24bcc 72 Terrace deposits 7/10/67 17 418 15 0.74 0.28 80 14 60 354 31 41 0.1 3.1 260 0 680 7.5
35dcc 80 Glacial drift 7/10/67 20 500 12 0.03 0 110 16 38 300 130 15 0.1 30 350 100 740 7.6
8-18E-27aaa 10 Glacial drift 4/10/67 14 340 6 0.01 0 93 15 14 312 37 16 0.1 5.3 290 38 570 7.3
8-19E-9cbc 66 Glacial drift 4/10/67 13 604 18 0.01 0 130 17 45 315 13 39 0.3 190 380 130 930 7.3
19caa 43 Glacial drift 6/30/67 15 801 23 0.07 0 150 33 69 346 40 110 0.4 210 510 220 1340 7.4
26cda 132 Tecumseh Shale, Queen Hill Shale Member of Lecompton Limestone 11/8/66   462 26 0.14 0.28 80 27 50 434 23 20 0.3 21 310 0 720 7.9
8-20E-32dcc 24 Alluvium 4/11/67 13 363 9 27 0.06 99 13 16 332 52 4 0.2 6.2 300 28 590 7.5
33ccc 42 Glacial drift 4/11/67 15 443 12 0.43 0 91 25 32 334 20 22 0.3 77 330 56 740 7.3
9-17E-11abd 26 Glacial drift 4/12/67 16 125 2.2 0.21 0 26 6.6 6.2 66 40 2 0.2 8.8 92 38 210 8.0
18cbb 11 Glacial drift 4/17/67 12 327 7.2 0.03 0 98 12 7.6 327 29 4 0.3 8 290 26 550 7.6
25dab 54 Alluvium 5/4/66   292 18 0.03 0 82 8.6 10 426 2.8 6 0.1 8.8 240 24 460 7.4
32ddd 32 Glacial drift 4/12/67 13 596 16 0.59 0 120 23 24 205 22 76 0.3 210 410 240 960 7.6
9-18E-14cbb 12 Glacial drift 4/10/67 13 548 10 0.45 0 120 29 43 434 120 8 0.2 15 410 50 850 7.3
27cda 20 Alluvium 4/13/67 14 343 10 3.8 0.08 99 12 10 303 53 8 0.2 1.8 300 48 560 7.5
9-19E-1cbc 49 Glacial drift 7/12/67 22 195 6 0.05 0 45 6.7 13 122 14 15 0.2 35 140 40 320 8.0
9add 24 Alluvium 4/10/67 13 670 12 2.5 0 130 31 72 422 130 53 0.5 21 450 90 1050 7.4
16cbc 70 Calhoun Shale, Deer Creek Limestone 6/30/67 20 352 18 0.01 0 72 30 21 293 9.5 4 0.3 3.5 300 0 600 7.5
24cbc 92 Calhoun Shale, Deer Creek Limestone 7/14/67 15 417 7.5 2.3 0.08 83 29 31 368 62 17 0.2 6.6 330 24 670 7.7
34ccc 40 Glacial drift 6/30/67 21 434 16 0.01 0 100 22 21 322 30 31 0.2 53 340 81 730 7.3
10-17E-29ccc 14 Glacial drift 4/12/67 13 1110 12 0.03 0 190 41 120 425 360 88 0.4 88 640 290 1620 7.4
10-18E-8ccb 20 Glacial drift 4/12/67 12 590 6.6 18 0.24 170 14 15 405 160 15 0.2 5.3 490 160 910 7.5
14caa 37 Glacial drift, Calhoun Shale 4/10/67 17 996 8.4 3.8 0.3 220 32 57 400 130 76 0.4 270 690 360 1470 7.0
10-19E-22bac 14 Alluvium 4/3/67 9 626 12 1.5 0.12 160 28 16 388 150 43 0.2 23 530 210 980 6.7
26ddd 24 Alluvium 6/30/67 18 380 9.6 0.23 0 88 14 32 295 37 24 0.2 30 280 35 640 7.4
30aad 35 Glacial drift 4/10/67 15 612 26 0.03 0 130 36 20 344 10 85 0.3 130 480 200 1020 7.3
10-20E-16ada 30 Glacial drift 4/3/67 15 1070 18 0.21 0.26 200 58 52 307 46 160 0.3 390 730 480 1680 7.0
31dcd 15 Glacial drift, Tecumseh Shale 6/29/67 16 277 14 0.09 0.14 80 7.9 11 283 17 6 0.1 1.5 230 0 470 7.1
11-16E-13cbd 78 Newman terrace deposits 5/18/66 16 395 20 0.03 0.05 110 7.8 21 322 59 13 0.1 6.2 300 40 630 7.3
11-17E-18ccc 93 Newman terrace deposits 4/28/66   383 31 0 0 100 11 17 320 38 11 0.1 16 300 35 600 7.5
20cac 70 Newman terrace deposits 4/8/66 14 576 26 2.3 0.87 150 20 22 376 140 30 0.2 0.9 470 160 880 7.6
21ada 48 Newman terrace deposits 6/1/66 14 267 25     67 6.1 14 198 33 5 0.2 19 190 30 400 7.9
25bbc 52 Newman terrace deposits 5/27/66 15 360 27 0.13 0 110 4.1 14 256 40 7 0.1 8.8 280 30 540 8.4
11-18E-16bbb 75 Newman terrace deposits 6/20/66 14 509 20 21 0.62 140 9.7 19 356 64 21 0.1 59 390 100 820 7.6
20acb 44 Newman terrace deposits 7/15/66 14 362 28 0.22 0.35 100 11 16 344 28 6 0.2 2.2 300 15 580 7.6
24ccd 84 Newman terrace deposits 4/20/67 14 433 23 20 12 110 20 11 307 84 14 0.2 21 350 100 690 7.6
26bab 81 Newman terrace deposits 5/18/66 15 405 30 0.09 0.06 110 18 15 376 35 10 0.1 5.3 340 33 660 7.4
26ccd 57 Alluvium 5/26/66 14 389 32 8 1 110 15 11 376 28 6 0.2 2.7 330 26 600 7.9
11-19E-21dab 13 Alluvium 4/10/67 12 396 12 0.07 0 110 11 22 303 41 26 0.2 29 310 62 640 7.5
24acc 35 Alluvium 6/29/67 19 302 12 15 0.17 85 11 13 278 26 15 0.1 2.2 260 29 510 7.4
27bcc 58 Terrace deposits 12/2/50 14 230 12 0.35   61 5.4 11 181 12 9 0.1 30 170 26    
11-20E-19daa 16 Glacial drift, Kanwaka Shale 4/3/67 13 349 7.2 2.4 0.18 91 18 15 312 36 24 0.4 3.8 300 45 580 7.2

1. Analyses by Kansas State Department of Health
2. In areas where the nitrate content of water is known to exceed 45 mg/l, the public should be warned of the potential dangers of using the water for infant feeding (U.S. Public Health Service, 1962, p. 7).

About a third of the water samples analyzed contained concentrations of nitrate (NO3) in excess of the 45 mg/l limit recommended for public water supply. Ingestion by infants (less than 6 months old) of water containing nitrate in concentrations in excess of 45 mg/b may cause infantile methemoglobinemia (also called cyanosis or blue-baby disease). It may also affect young stock animals adversely. Boiling or softening of water does not remove or decrease the nitrate content. A brief investigation of a number of wells that yield water having a high nitrate content indicated that surface pollution was the probable source of the nitrate. Legumes, plant debris, fertilizers, animal wastes, and sewage probably are the sources of nitrate in most surface and ground waters. Protection of wells against the entrance of surface water may not be sufficient to prevent nitrate pollution. Nitrate can be leached from surface sources and can be carried to the water table where the nitrate will remain in solution.

Iron and manganese, when present in concentrations of more than 0.3 mg/l, may cause turbidity in the water and staining of plumbing fixtures and laundered fabrics. In Jefferson County the majority of samples contained iron concentrations of less than 1.0 mg/l.


Prev Page--Hydrology || Next Page--Ground-water Summary

Kansas Geological Survey, Jefferson County Geohydrology
Web version July 2002. Original publication date Dec. 1972.
Comments to webadmin@kgs.ku.edu
The URL for this page is http://www.kgs.ku.edu/General/Geology/Jefferson/05_chem.html